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Abstract—The h-clique based higher-order cohesive subgraph
mining is an important operator in graph analysis. The h-clique
core and h-clique densest subgraph are two representative higher-
order cohesive subgraph models which have been widely used
in many practical applications. However, computing these two
models on large graphs is often very costly due to the hardness
of counting the h-cliques. In this paper, we propose a relaxed
higher-order cohesive subgraph model, called colorful h-star
core, based on counting the number of colorful h-stars. Unlike
the h-cliques, we show that the colorful h-stars can be counted
and updated very efficiently using a novel dynamic programming
(DP) algorithm. Based on the proposed DP algorithm, we develop
an efficient colorful h-star core decomposition algorithm which
takes O(h×m) time and uses O(h×n+m) space, where m and n
denote the number of edges and nodes of the graph respectively.
In addition, we also propose a graph reduction technique based
on our colorful h-star core model to accelerate the computation of
the state-of-the-art approximation algorithm for h-clique densest
subgraph mining. Moreover, we show that the colorful h-star
core can also provide a very good approximation of the h-clique
densest subgraph. The results of comprehensive experiments on
11 large real-world datasets demonstrate the efficiency, scalability
and effectiveness of the proposed algorithms.

I. INTRODUCTION

Real-world graphs, such as social networks, biological net-

works, and communication networks often consist of cohesive

subgraph structures. Mining cohesive subgraphs from a graph

is a fundamental operator in many graph analysis tasks [1],

which has attracted much attention in the database and data

mining communities due to a large number of applications,

such as community search [2]–[4], locating influential nodes

[5], [6], keyword extraction from text [7], [8], and real-time

story identification [9], [10].

There exist many different cohesive subgraph models, in-

cluding k-core [11], [12], k-truss [13], [14], k-plex [15],

h-clique [16]–[18], k-edge connected subgraph [19], [20],

densest subgraph [2], [3] and so on. The cohesiveness of a

subgraph is usually measured by the minimum degree, the

average degree, or edge connectivity [10]. Mining cohesive

subgraphs based on different cohesiveness measures leads to

the resulting subgraphs with different properties, and also often

requires different levels of computational effort [10], [21].

Recent literature [22]–[25] on h-clique based higher-order

cohesive subgraph mining has attracted much attention. The

higher-order variants of k-core and densest subgraph have been

proposed to identify more cohesive subgraphs of the graph.

Specifically, a higher-order k-core model, called h-clique k
core, is defined as a maximal subgraph, in which each node

participates in at least k h-cliques (h-clique is a subgraph with

h nodes such that each pair of nodes is connected with an edge)

(a) Stars (b) Colorful stars

Fig. 1. Illustration of stars and colorful stars.

[16], [22] . The h-clique densest subgraph, first introduced by

Tsourakakis [23], is a higher-order variant of the traditional

densest subgraph [23]–[25]. Instead of maximizing the average

degree, the goal of the h-clique densest subgraph problem is to

maximize the average number of h-cliques over the number of

nodes among all possible subgraphs. Although those higher-

order cohesive subgraph models have been well studied and

also have successfully been applied in many different domains

[22]–[25], the computation of those models is often very

costly on large graphs for a relatively large h (e.g., h = 6).

This is because all those h-clique based higher-order cohesive

subgraph models need to count the number of h-cliques, which

is often costly for a large h due to combinatorial explosions.

To address this issue, we propose a novel higher-order k-

core model based on a concept of colorful h-star. Specifically,

we first color the graph using a linear-time greedy coloring

algorithm [26], [27] such that any two adjacent nodes in the

graph have different colors. An h-star R is a tree with a

central node connected to the other h − 1 nodes (Fig 1(a)).

A colorful h-star, denoted by S, is a star in which all nodes

have different colors (Fig 1(b)). Clearly, a colorful h-star is

a relaxed definition of h-clique, as an h-clique must form

a colorful h-star. The colorful h-star k core is a maximal

subgraph of G in which each node acts as the center of at

least k colorful h-stars. It is easy to derive that the traditional

k-core is a special case of our colorful h-star k core when

h = 2. Similar to the traditional k-core, we can also obtain a

colorful h-star core decomposition of the graph by determining

all the colorful h-star k cores.

Unlike counting the h-cliques, we show that the number

of colorful h-stars for each central node can be computed

and updated in at most O(hχ) time by a novel dynamic

programming (DP) algorithm, where χ is the number of colors

used to color the graph. Based on our DP technique, we

develop an O(h×m)-time algorithm to compute the colorful

h-star core decomposition of the graph using O(hn+m) space,

thus our model can be scalable to handle large graphs even
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for a relatively large k. In addition, based on the colorful

h-star core model, we also develop a new graph reduction

technique for the h-clique densest subgraph problem which

can significantly speed up the state-of-the-art approximate h-

clique densest subgraph mining algorithm [22]. To summarize,

the main contributions of this paper are as follows.

New model. We propose a new higher-order cohesive sub-

graph model, called colorful h-star core, based on a newly-

introduced concept of colorful h-star. Our model can be

considered as a relaxation of the h-clique core model. Unlike

the h-clique core model, a striking feature of our model is that

it can be computed in near-linear time w.r.t. the graph size.

Novel algorithms. We propose a DP algorithm to compute

the number of colorful h-stars for each node.

The novel DP-based updating technique can dynamically

update the number of colorful h-stars for a node when

one of its neighbor node is deleted, without recomputing

the colorful h-star counts from scratch. With this DP-based

updating technique, we propose an efficient peeling algorithm

to compute the colorful h-star core decomposition which

consumes O(hm) time and O(hn+m) space. Since h is often

very small (less than 10), our work provides a near-linear time

solution for higher-order graph analysis applications.

We also present a colorful h-star core based graph reduction

technique to accelerate the h-clique core based approximate h-

clique densest subgraph mining algorithm without sacrificing

approximation performance.

Extensive experiments. We conduct extensive experiments

on 11 large real-life datasets to evaluate our algorithms. The

results show that: (1) the proposed colorful h-star core de-

composition algorithm is very efficient to handle large graphs

which takes only a few seconds on the large graphs with more

than 1M nodes and 10M edges even when k = 6. (2) the

proposed graph reduction technique can achieve one order of

magnitude speedup over the state-of-the-art approximate h-

clique densest subgraph mining algorithm. For example, on

the largest datasets LiveJournal (more than 4M nodes and

40M edges), the state-of-the-art algorithms takes 113 seconds

on the original graph. However, when integrating with our

graph reduction technique, such an algorithm only takes 11

seconds. (3) Our colorful h-star k core with maximum k also

provides a very good approximation of the h-clique densest

subgraph. On most datasets, it can achieve the same and even

better approximation ratio than the state-of-the-art method

[22]. (4) Graph coloring techniques can affect the performance

of our algorithms, but the distributions of corlorful h-star core

numbers are generally similar w.r.t. different graph coloring

techniques. In addition, we also conduct a case study on

DBLP, and the results show that our model can indeed identify

some interesting and meaningful communities with different

semantics compared to the previous models.

Reproducibility. The source code of this paper is released at

Github: https://github.com/Gawssin/ColorfulStarCore for re-

producibility purposes.
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(b) The colored graph

Fig. 2. Illustration of the graph coloring technique.

II. PRELIMINARIES

Let G = (V,E) be an undirected graph, where V (|V | = n)

and E (|E| = m) denote the set of nodes and edges respec-

tively. We denote with Nu(G) the set of neighbor nodes of u
in G, and du(G) = |Nu(G)| denotes the degree of u in G. A

subgraph H = (VH , EH) is called an induced subgraph of G
if VH ⊆ V and EH = {(u, v)|(u, v) ∈ E, u ∈ VH , v ∈ VH}.

An h-star R is a tree, with one internal or central node

having degree h− 1 and the other h− 1 nodes having degree

1. Clearly, in a graph G, a node u participates in
(
du(G)
h−1

)
h-

stars which are centered on u if du(G) ≥ h − 1. Below, we

first introduce the concept of graph coloring, and then define

our colorful h-star model.

Graph coloring is a procedure that assigns an integer color

value taken from [1, · · · , χ] to each node u in G, denoted by

color(u), so that no two adjacent nodes have the same color

value. Since the minimum coloring problem (χ is minimum)

is NP-hard [28], we make use of a linear-time greedy coloring

algorithm [26], [27] to obtain a valid coloring. The following

example illustrates the graph coloring procedure.

Example 1. Consider a graph G in Fig. 2(a). We can color
G based on an inverse degree ordering as used in [26], [27].
Clearly, in G, (v5, v3, v4, v7, v6, v1, v2, v9, v8) is an inverse
degree ordering. Following this ordering, we first color v5 with
the smallest color 1, and then color v3 with a color 2, and the
other nodes are iteratively colored in a similar way. Fig. 2(b)
shows the results of this coloring procedure.

Based on a valid coloring, we define a concept called

colorful h-star as follows.

Definition 1 (Colorful h-star). Given a colored graph G =
(V,E) and an integer h ≥ 2, an h-star S in G is colorful if
any pair of nodes u, v ∈ S have different color values.

By Definition 1, any pair of nodes in a colorful h-star must

have different colors, as shown in Fig.1(b). The h-clique model

also shares this property, and thus it must be a colorful h-

star. Indeed, unlike the h-clique, the colorful h-star may miss

some edges between two nodes, even when they have different

colors. However, by greedy coloring, a subgraph induced by

the nodes of a colorful h-star may have many edges and has the

potential to become a clique, as the greedy coloring algorithm

ensures that two adjacent nodes have different colors. Thus, we

consider a subgraph induced by the nodes of a colorful h-star

as a relaxed h-clique subgraph. Such a nice feature motivates

us to use colorful h-stars to replace h-cliques as a building

block to perform higher-order graph analysis.
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Fig. 3. Illustration of the pattern degree of v5.

Definition 2 (Pattern degree). Given a colored graph G =
(V,E) and an integer h. Let R , S , Ψ be an h-star, a colorful
h-star and an h-clique respectively. The h-star degree of a
node u in G, denoted by du(G,R), is the number of h-stars
centered on u; the colorful h-star degree of u, denoted by
du(G,S), is the number of colorful h-stars centered on u;
and the h-clique degree of u, denoted by du(G,Ψ), is the
number of h-cliques that u participates in.

Example 2 illustrates the definition of pattern degree.

Example 2. Reconsider the graph G in Fig. 2(a). Suppose
h = 3. For node v5, we can easily derive that its h-star degree
is dv5(G,R) =

(dv5 (G)
h−1

)
= 15. Also, v5 participates in 8 3-

cliques listed in Fig.3(b), thus its h-clique degree dv5
(G,Ψ)

is equal to 8. After coloring G in Fig. 2(b), the colorful h-star
degree of v5, denoted by dv5(G,S), is 13, because there exist
13 colorful 3-stars which are centered on v5 as enumerated
in Fig. 3(a).

For higher-order graph analysis, it often needs to compute

the pattern degree of a node. For example, the h-clique based

higher-order graph analysis applications [23]–[25] require to

calculate the h-clique degree of a node. When using our

colorful h-star as a relaxation of h-clique for higher-order

graph analysis, we also need to compute the colorful h-star

degree of a node. However, computing such a quantity for

each node is a nontrivial task. Moreover, some applications

may also need to dynamically update the colorful h-star degree

when the graph is updated by deleting an edge. We detail these

challenges as follows.

Challenge. Unlike the h-star degree, which can be derived by

a combinatorial formula, there does not exist a combinatorial

formula that can be used to compute the colorful h-star degree

for a node u. A straightforward approach is to enumerate all

h-stars of u and then count all the valid colorful h stars.

Such a straightforward approach is clearly intractable for high-

degree nodes due to combinatorial explosions. Therefore, a

challenging problem is how can we develop practical solutions

to compute the colorful h-star degree of a node without brute-

force enumeration. Furthermore, when the graph is updated,

how can we derive a fast solution to update the colorful h-

star degree of a node without recomputing the colorful h-

star degree from scratch. Below, we will develop efficient

algorithms based on a technique of dynamic programming to

tackle these challenges.

Algorithm 1: The DP-based Counting Algorithm
Input: A graph G and a node u
Output: The colorful h-star degree du(G,S)

1 color[1, · · · , n] ← GreedyColoring(G);
2 for i = 1 to χ do
3 Group(i) ← {v|v ∈ Nu(G), color(v) = i};
4 cnt(i) ← |Group(i)|;
5 du(G,S) ← DP(χ, h − 1);
6 return du(G,S);

7 Procedure GreedyColoring(G)
8 Let π′ be any ordering on nodes;
9 flag(i) ← −1 for i = 1, · · · , χ;

10 for each node v ∈ π′ in order do
11 for u ∈ Nv(G) do
12 flag(color(u)) ← v;

13 c ← min{i|i > 0, flag(i) �= v};
14 color(v) ← c;

15 return color(v) for all v ∈ G;

16 Procedure DP(c, h̄)
17 for i = 0 to c do
18 for j = 0 to h̄ do
19 if j = 0 then dp(i, j) ← 1;
20 else if i < j then dp(i, j) ← 0;
21 else dp(i, j) ← dp(i − 1, j − 1) × cnt(i) + dp(i − 1, j);

22 return dp(c, h̄);

III. COLORFUL h-STAR COUNTING AND UPDATING

In this section, we first propose a dynamic programming

(DP) algorithm to compute the colorful h-star degree of any

given node. Then, we develop an efficient updating algorithm

to update the colorful h-star degree of a node when one of its

neighbors is removed.

A. The DP algorithm

Algorithm 1 shows the pseudocode of our DP algorithm

to calculate the colorful h-star degree of u. First, Algorithm

1 invokes the greedy coloring procedure [26], [27] following

any ordering on nodes (break ties by node ID) to obtain a

valid coloring for all nodes (line 1). After that, the algorithm

computes du(G,S) using a DP approach (lines 2-6). Below,

we present a detailed description of the DP procedure.

First, for any node u, the neighbors of u can be divided

into χ groups in terms of their colors; here χ is the number of

colors used by the greedy coloring algorithm. Let Group(i) be

the set of u’s neighbor nodes whose color values are equal to i,
i.e. Group(i) = {v|v ∈ NG(u), color(v) = i}. The size of each

color group is denoted by cnt(i) = |Group(i)|. Let DP(i, j)
be the number of ways to choose j nodes with different colors

from Group(1)∪Group(2)∪· · ·∪Group(i). The computation of

DP(i, j) can be divided into two cases, by considering whether

or not select a node from Group(i).

Case 1. If we choose a node from Group(i), we just need to

choose j−1 nodes with different color values from Group(1)∪
Group(2)∪· · ·∪Group(i−1). Therefore, in this case, we obtain

DP(i− 1, j − 1)× cnt(i) colorful (j + 1)-stars centered at u.

Case 2. When we do not choose a node from Group(i),
we must collect j nodes from Group(1) ∪ Group(2) ∪ · · · ∪
Group(i− 1) to obtain DP(i− 1, j) colorful (j + 1)-stars.
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Fig. 4. Illustration of the computation for v5’s colorful 3-star degree.

We can derive the colorful h-star degree of a node by adding

up the results of the above two cases. Specifically, we are able

to obtain the following recursive DP equation:

DP(i, j) = DP(i− 1, j − 1)× cnt(i) + DP(i− 1, j), (1)

for all i ∈ [1, · · · , χ], j ∈ [1, · · · , h], i ≥ j.

The base cases can be set as follows:

{
DP(i, 0) = 1, for all i ∈ [0, · · · , χ]
DP(i, j) = 0, for all i ∈ [0, · · · , χ], j ∈ [0, · · · , h], i < j,

(2)

Based on Eq. (1) and Eq. (2), we can compute the colorful

h-star degree of u by dynamic programming.

Example 3. Fig. 4 shows the computational procedure of v5’s
colorful 3-star degree. The DP algorithm computes dv5

(G,S)
by gradually involving color groups from “2=Green” to
“5=Blue”. It is impossible to pick two neighbor nodes of
different colors from the first two color groups (DP(2, 2) = 0),
since there does not exist a neighbor node of v5 with color
value “1=Red”. Obviously, there are two ways to choose
a node from the first two color groups (DP(2, 1) = 2),
because v5 is connected to two “2=Green” nodes. In order
to choose two neighbor nodes with different colors from the
first three color groups (DP(3, 2)), the DP algorithm can
pick one node from the first two color groups (DP(2, 1)) and
then pick another node from any of the “3=Purple” group
(cnt(3) ), or do not consider the third color group and choose
two nodes with different colors directly from the first two
color groups (DP(2, 2)). Finally, v5’s colorful 3-star degree
dv5(G,S) = DP(5, 3−1) = 13 can be computed in the similar
method following an increasing order of color values as shown
in Fig. 4.

Space optimization. Note that in the DP table (DP(i, j) for

all i and j), calculating DP(i, j) relies only on the result of

DP(i − 1, j) and DP(i − 1, j − 1), which are both in the

DP(i− 1, ·) array. This means that all the DP(p, ·), p < i− 1
arrays contribute nothing to this calculation. Therefore, when-

ever computing on the DP table, there are only two active

arrays, DP(i−1, ·) for reading and DP(i, ·) for writing. Based

on this observation, we can use two rolling arrays to read
and write alternately, which significantly reduces the space

consumption to O(2× h).

To further optimize the space usage, for each i we compute

DP(i, j) following the descending order of j, i.e. varying j
from h to 0. Furthermore, we simplify the data structure and

reduce the two-dimensional DP table to a single array of size

h; and slightly modify the DP recursive equation as:

DP(j) = DP(j − 1)× cnt(i) + DP(j), (3)

for all i ∈ [0..χ], j ∈ [0..h], i ≥ j.

Note that the two DP(j) on the left and right hand side of

the equation have different meanings. The DP(j) on the left

hand side indicates DP(i, j) of Eq. (1) ; the DP(j − 1) and

DP(j) on the right hand side are old values, which indicate

DP(i− 1, j − 1) and DP(i− 1, j) respectively.

After χ-round iterative calculation, we can obtain DP(h−1)
which is equal to du(G,S). Note that the algorithm only

consumes O(h) space by using this trick. The following

theorem details the time and space complexity of our DP

algorithm. Due to the space limit, the proofs of theorems are

omitted.

Theorem 1. Given a graph G, a node u and an integer
h, Algorithm 1 computes the colorful h-star degree of u in
O(h × min{χ, du(G)}) time using O(h) space, where χ is
the maximum color value of all nodes in G.

B. The updating algorithm

Here we consider the problem of updating the colorful

h-star degree of a node u when one of its neighbor node

v is deleted. To this end, a straightforward algorithm is to

recompute the colorful h-star degree of u after removing v by

using Algorithm 1, which takes O(χh) time. Clearly, such an

algorithm is inefficient when we need to frequently handle

edge removals. A natural question is that can we have a

better algorithm to update the colorful h-star degree of a node

without recomputing from scratch? Below, we will develop a

novel algorithm to achieve this goal.

Our updating algorithm is based on a key observation: the

removal of v reduces cnt(color(v)), thus it only affects the

result computed in Case 1 of the DP equation. Therefore,

it is unnecessary to re-calculate the entire DP table again,

because the result in Case 2 remains the same. Based on this

observation, we need to decompose the DP equation into two

different cases. Specifically, let us consider a node u and a

color value χ′. Then, the colorful (i + 1)-stars on u can be

divided into two various types: the leaves of colorful (i+ 1)-
stars are colored with or without χ′. Let G and F be two

arrays where G(i) and F(i) denotes the number of the former

type and the latter type respectively. More formally, let A be

a set of nodes,

P (A) : ∀{v, w}({v, w} ⊆ A→ color(v) �= color(w))

Q(A) : ∀v(v ∈ A→ color(v) �= χ′)
Q̄(A) : ∃v(v ∈ A ∧ color(v) = χ′)
F(i) = |{A|A ⊆ Nu(G), |A| = i, P (A), Q(A)}|
G(i) = |{A|A ⊆ Nu(G), |A| = i, P (A), Q̄(A)}|

DP(i) = |{A|A ⊆ Nu(G), |A| = i, P (A)}|.
Here DP(i) denotes the colorful (i+1)-star degree of u. Then,

we have the following result.
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Algorithm 2: The Counting and Updating Algorithm
Input: A graph G, a node u and its neighbor v
Output: The updated colorful h-star degree du(G\v,S)

1 du(G,S) ← Counting(u);
2 Delete v from G;
3 du(G\v,S) ← Updating(DP, v);

4 Procedure Counting(u)
5 F(·) ← 0;F(0) ← 1;
6 χ′ ← 1;
7 for i = 2 to χ do
8 for j = h to 1 do
9 F(j) ← F(j − 1) × cnt(i) + F(j);

10 for j = 1 to h do
11 G(j) ← F(j − 1) × cnt(1);
12 DP(j) ← F(j) + G(j);

13 return DP(h − 1);

14 Procedure Updating(DP, v)
15 χ′ ← color(v), F(0) ← 1;
16 for i = 1 to h do
17 G(i) ← F(i − 1) × cnt(color(v));
18 F(i) ← DP(i) − G(i);

19 cnt(color(v)) ← cnt(color(v)) − 1;
20 for i = 1 to h do
21 G(i) ← F(i − 1) × cnt(color(v));
22 DP(i) ← F(i) + G(i);

23 return DP(h − 1);

Theorem 2. After removing a neighbor v, the colorful h-star
degree of u can be updated by the following DP equation{ G(i)← F(i− 1)× cnt(color(v))

DP(i)← F(i) + G(i) (4)

for all i ∈ [1, · · · , h]. The updated du(G\v,S) is equal to
DP(h− 1).

Our algorithm is outlined in Algorithm 2. First, in the

counting phase, we re-design a DP algorithm to compute the

colorful h-star degree of u by using the arrays F , G, and

DP as defined in Eq. (4). The computation of F(i) is similar

to the DP procedure in Algorithm 1. Note that the same

trick that computing F following the descending order of i
is also applied to reduce the space usage (lines 8-9). After

that, based on the F array, we can compute G and DP by

Eq. (4) (lines 10-12). Note that because the color value χ′

can be determined arbitrarily, we fix χ′ = 1 for the sake

of simplicity (lines 6-7). It is easy to see that both the time

and space complexity of the re-designed DP procedure are the

same as those of Algorithm 1.

Second, in the updating stage, we develop a novel technique

to update the colorful h-star degree of u in G/v when any

neighbor v of u is removed, instead of recomputing from

scratch. Our technique is based on the following intuition.

When removing v, the colorful h-stars that are centered on

u and contain v will disappear, and the other colorful h-stars

remain unchanged. Therefore, only G needs to be updated. To

achieve this, we need to restore G and F based on the DP
array when we consider the node u and its deleted neighbor

node v. Note that we can use Eq. (4) to restore G and F by

DP . A difference compared to the counting stage is that χ′

must be set to color(v) (line 15), because only the number of

remove V1remove V1

V1

1 4 5

2 8

0 1 2
6 13

[1]- [1]

0 2 1 2 1
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× [4]
1 4 5

2 4

0 1 2
5 9

[1]+ [1]

0 2 1 1 1

× [4]
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× [4]

Fig. 5. Illustration of updating v5’s colorful 3-star degree.

colorful h-stars colored by color(v) will reduce. The proposed

updating technique consists of three steps, restoring (lines 16-

18), updating (line 19) and regenerating (lines 20-22).

S1. In the restoring step, our algorithm restores F(i) and G(i)
on the basis of DP(i) and cnt(color(v)).

S2. In this step, Algorithm 2 updates the color set of u’s

neighbors.

S3. In the last step, Algorithm 2 calculates G(i) and DP(i)
based on F(i) and the updated color groups of u’s

neighbors.

Example 4. For the graph G in Fig. 2(a), consider the case
of the removal of v1 which is a neighbor node of v5 with
color value “4=Yellow”. The entire updating procedure shown
in Fig. 5 contains three steps. First, the updating algorithm
refreshes the elements in G and F alternately according to
DP following the <�,�,�,�> order. Then, the color group
with regard to v1 is updated after removing v1. Finally, the
elements of DP and G are replaced by new values indicated
in Green, following the <�,�,�,	> order. The v5’s colorful
3-star degree dv5(G,S) = DP(2) will be updated to 9 when
the algorithm terminated.

The correctness of Algorithm 2 can be guaranteed by

Theorem 2. A nice feature of our update technique is that

both the restoring and recomputing steps consume O(h) time,

which is much more efficient than the straightforward re-

computation based updating algorithm. The following theorem

shows the time and space complexity of our algorithm.

Theorem 3. Given a graph G, an integer h and a node u,
after removing any neighbor of u, the updating procedure of
Algorithm 2 updates its colorful h-star degree in O(h) time
using O(min{χ, du(G)}+h) space, where χ is the maximum
color value of all nodes in G.

IV. COLORFUL h-STAR CORE DECOMPOSITION

In this section, we propose a novel higher-order cohesive

subgraph model, called colorful h-star k core, also referred

to as (k,S)-core, based on the concept of colorful h-star.

Similar to the classical core decomposition on graph, we also

develop a near-linear peeling algorithm for colorful h-star core

decomposition based on the proposed colorful h-star counting

and updating techniques.
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Fig. 6. k-core, (k,S)-core and (k,Ψ)-core (Ψ: 3-clique; S : colorful 3-star).

A. The colorful h-star core model

We start by reviewing the definition of the classical k-core

[21], and then introduce the concept of colorful h-star core.

Given a graph G and an integer k, a k-core (or core of order

k), denoted by Ck, is a maximal induced subgraph of G such

that every node in Ck has a degree no smaller than k, i.e.,

du(Ck) ≥ k for every u ∈ Ck [21]. The core number of a

node u, denoted by cu, is the largest integer k such that there

exists a k-core containing u [21]. The maximum core number

of a graph G, denoted by δ, is the maximum value of core

numbers among all nodes in G. The maximum core number

δ is also referred to as the degeneracy of G [29].

Example 5. Fig. 6(a) depicts k-cores of the graph in Fig.
2(a). The number k in each rectangle indicates the k-core
contained in that rectangle. For example, the subgraph induced
by {v1, v2, v3, v4, v5, v6, v7} is a 3-core. The entire graph is
the 0-core, 1-core and 2-core.

The k-cores have four crucial properties: (a) k-cores are

nested, more formally, Ci ⊆ Cj if i > j; (b) a k-core can be

disconnected; (c) du ≥ cu; (d) the k-core is unique and the

core decomposition can be computed in O(m+ n) time [30].

Inspired by the definition of the classic k-core, we define

our colorful h-star k core as follows:

Definition 3 (Colorful h-star k core). Given a colored graph
G, an integer k and the size h of a colorful star S , a colorful
h-star k core, or (k,S)-core of G, denoted by Cs

k, is a maximal
subgraph H such that ∀u ∈ VH , du(H,S) ≥ k.

Based on Definition 3, the colorful h-star core number of u,

denoted by cu(G,S), is the largest k such that there exists a

colorful h-star k core containing u. The maximum colorful h-

star core number of a graph G, denoted by δS , is the maximum

value of colorful h-star core numbers among all nodes.

Example 6. Let S be the colorful 3-star. Fig. 6(b) shows all
(k,S)-cores of the graph. The number k in each rectangle
indicates the (k,S)-core contained in that rectangle. For
example, the subgraph induced by {v3, v4, v5, v6, v7} is the
(6,S)-core since each node in the 5-clique participates in 6
colorful 3-stars. We can see that k-cores and (k,S)-cores are
the same for k = 3, 4, but obviously different when k = 1, 2.
Note that the entire graph is a (0,S)-core.

Similar to k-cores, it is easy to derive that the (k,S)-cores

also have the following properties: (a) (k,S)-cores are nested,

that is for any two integers i and j, if i > j, then Cs
i ⊆ Cs

j ; (b)

a (k,S)-core may be disconnected; (c) cu(G,S) ≤ du(G,S);

Algorithm 3: The Colorful h-Star Core Decomposition

Input: A graph G and an integer h
Output: cu(G,S) for each node u ∈ V

1 for u = 1 to |V | do
2 du(G,S) ← Counting(u); // Algorithm 2

3 Sort nodes of G in a non-decreasing order of their colorful h-star degrees;
4 H ← G;max core ← 0;
5 for i = 1 to |V | do
6 u ← argminv∈VH

dv(H,S);

7 if du(H,S) > max core then
8 max core ← du(H,S);

9 cu(G,S) ← max core;
10 for each w ∈ Nu(H) do
11 dw(H\u,S) ← Updating(DP, w); // Algorithm 2

12 Delete u from H;
13 Resort the nodes of H;

14 return cu(G,S) for each node u ∈ V ;

(d) (k,S)-cores are unique, which means that there exists only

one (k,S)-core for a specific h in G. Below, we show that

the colorful h-star cores can be computed in near-linear time.

B. The colorful h-star core decomposition algorithm

Based on Definition 3, we define the colorful h-star core

decomposition problem as follows.

Problem 1 (COLORFUL h-STAR CORE DECOMPOSITION ).
Given a graph G and an integer h, the colorful h-star core
decomposition of G is a problem of computing the colorful
h-star core numbers for all nodes in G.

It is easy to derive that a (k,S)-core can be obtained by

iteratively removing nodes whose colorful h-star degrees are

less than the given k. Therefore, we can devise a peeling

algorithm to determine the core numbers for all nodes, which

iteratively deletes the node with the smallest colorful h-star

degree. Such an peeling algorithm is outlined in Algorithm 3.

First, Algorithm 3 computes the colorful h-star degree for

each node in V using the DP algorithm given in Algorithm 2

(lines 1-2). Then, the nodes are sorted in a non-decreasing

order of their colorful h-star degrees (line 3). Next, the

algorithm removes the node with the minimum colorful h-star

degree (lines 5-13). Note that in each iteration, we assign the

current updated max core to the colorful h-star core number of

u (lines 7-9). After that, we update the colorful h-star degrees

of neighbor nodes of u by invoking the proposed Updating
algorithm (lines 10-11). Algorithm 3 deletes u from H and re-

sorts the nodes of the remaining graph (lines 12-13). Finally,

we return cu(G,S) for each node v ∈ V (line 14). Obviously,

δs can be derived from the final max core. Below, we analyze

the time and space complexity of Algorithm 3.

Theorem 4. Given a graph G and an integer h, Algorithm 3
computes the colorful h-star core decomposition in O(h×m)
time using O(hn+m) space.

Note that when h = 2, a colorful 2-star is exactly an edge,

and du(G,S) = du(G). In this case, the colorful 2-star core

decomposition turns into the classical core decomposition. The
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core decomposition takes O(m) time using O(m+ n) space,

which is consistent with our results.

V. SPEED UP h-CLIQUE DENSEST SUBGRAPH MINING

In this section, we show that our colorful h-star core

decomposition technique can be used to speed up the state-

of-the-art approximate algorithm for mining h-clique densest

subgraph. Below, we first briefly review this problem. Note

that existing algorithms for the h-clique densest subgraph

problem can be classified in two categories: exact algorithms

and approximation algorithms. Even though the exact algo-

rithms based on the max-flow technique can solve this problem

in polynomial time for small h values [23], this problem

may be NP-hard for a large h. Because the number of h-

cliques in a graph is exponential in the size h, and counting

h-clique is often infeasible when h is large. Thus, in this paper,

we focus mainly on the approximation algorithms. Below,

we will discuss two state-of-the-art approximation algorithms

(Section V-B) to solve this problem. Then, we propose an

efficient graph reduction technique, based on the colorful h-

star core decomposition, to significantly prune the unnecessary

nodes from the given graph without sacrificing approximation

performance (Section V-C).

A. The h-clique densest subgraph

Given a graph G, an h-clique Ψ is a subgraph with h nodes

such that each pair of nodes is connected with an edge. The

h-clique number of G, denoted by ch(G), is the number of

h-cliques in G. We also denote du(G,Ψ) to the number of

h-cliques that u participates in.

Definition 4 (h-CLIQUE DENSITY). Given a graph G and an
integer h, for any induced subgraph H , VH ⊆ VG, its h-clique
density is defined as σh(H) = ch(H)

|VH | .

Problem 2 (H-CLIQUE-DS-PROBLEM). Given a graph G and
an integer h, find a subgraph H∗ that achieves the largest
h-clique density among all subgraphs of G, and let σ∗

h =
σh(H

∗).

Fang et al. [22] introduced a concept of h-clique core, which

can help achieve a good approximation to the H-CLIQUE-DS-

PROBLEM.

Definition 5 (h-CLIQUE CORE). ( [22]) Given a graph G, an
integer k, and an h-clique Ψ, the h-clique k core, or (k,Ψ)-
core of G, denoted by CΨ

k , is a maximal subgraph such that
∀u ∈ CΨ

k , du(CΨ
k ,Ψ) ≥ k.

We denote the h-clique core number of a node u ∈ V
by cu(G,Ψ), which is the largest k such that there exists an

h-clique k core containing u. The maximum h-clique core

number of a graph G, denoted by δΨ, is the maximum value

of h-core numbers among all nodes.

Example 7. Let Ψ be the 3-clique. Fig. 6(c) shows all (k,Ψ)-
cores of the graph. The number k in each rectangle indicates
the (k,Ψ)-core contained in that rectangle. For example, the
subgraph induced by {v3, v4, v5, v6, v7} is the (6,Ψ)-core,

since each node in the 5-clique participates in six 3-cliques.
Also, cv1(G,Ψ) = 3 as v1 is contained in the (3,Ψ)-core and
is not a member of (4,Ψ)-core.

The following theorem shows that the (δΨ,Ψ)-core is a

good approximation of the h-clique densest subgraph [22].

Theorem 5. ( [22]) Given a graph G and an h-clique Ψ, the
(δΨ,Ψ)-core CΨ

δΨ is a 1
h -approximation solution to h-clique

densest subgraph problem, such that σh(C
Ψ
δΨ) ≥ 1

h × σ∗
h.

B. Existing approximation algorithms and their limitations

Core-based approximation algorithm. Fang et al. established

lower and upper bounds on the h-clique density for each

(k,Ψ)-core [22]. Based on these bounds, they computed the

upper and lower bounds of σ∗
h. They also found that the h-

clique densest subgraph is located in some specific (k,Ψ)-core

and the (δΨ,Ψ)-core is a 1
h -approximation solution. There-

fore, to obtain the (δΨ,Ψ)-core, unlike the straightforward

method which greedily peels the node with the minimum h-

clique degree, they proposed the CoreApp algorithm which

focuses on computing the (δΨ,Ψ)-core directly based on the

observation that nodes in (δΨ,Ψ)-core tend to have higher h-

clique degrees. The main defect of CoreApp is that it needs

to compute the (δΨ,Ψ)-core on the entire graph and doubles

the size of candidate nodes set between different iterations

from V (G), which is very costly. Since a large number of

nodes actually contribute nothing to the (δΨ,Ψ)-core, consid-

ering those unpromising nodes in the computational procedure

causes much unnecessary time consumption.

Sampling-based approximation algorithm. Sun et al. pro-

posed a sampling based algorithm, called SeqSamp++, which

can obtain an approximation of the h-clique densest subgraph

[25]. The general idea of the SeqSamp++ algorithm is as

follows. First, the algorithm maintains a variable r(u) for

each node u, and assigns every h-clique to the node v with

the minimum r value among the nodes in the h-clique and

increases r(v) by 1. Then, SeqSamp++ sorts nodes of V
in an increasing order according to their r values. After that

SeqSamp++ computes the h-clique density of the subgraph

induced by the first s nodes for each s ∈ [n], and returns the

subgraph which achieves maximum h-clique density among all

n subgraphs. To save memory usage, the algorithm stores each

h-clique into main memory independently with probability

p = σ
ch(G) , where σ is a parameter which represents the

approximate number of h-cliques to be sampled. The main

limitation of SeqSamp++ is that it suffers from a loose upper

bound even after a large number of iterations. Thus, to obtain

a good approximation, such an algorithm often needs a long

time as confirmed in our experiments.

C. The colorful h-star core based algorithm

The (δΨ,Ψ)-core achieves a 1
h -approximation to the H-

CLIQUE-DS-PROBLEM, but computing the (δΨ,Ψ)-core on

the graph is a time-consuming task. In this subsection, we

present an effective pruning strategy to reduce the graph G
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Algorithm 4: The Colorful h-Star Core Reduction
Input: A graph G and an integer h
Output: The (θ,S)-core

1 Ψ ← compute a large clique using a greedy algorithm proposed in [31];

2 ω ← |VΨ|, θ ← ch(Ψ) =
(ω−1
h−1

)
;

3 Cw−1 ← compute the (ω − 1)-core using the peeling algorithm [30];
4 (θ,S)-core ← ColorfulStarCore(Cw−1, h, θ);
5 return (θ,S)-core;

6 Procedure ColorfulStarCore (H,h, k)
7 for u = 1 to |VH | do
8 du(H,S) ← Counting(u);

9 Let Q be an empty queue;
10 for each v ∈ H do
11 if du(H,S) < k then
12 Push v to Q;

13 while Q �= ∅ do
14 Pop a node u from Q;
15 for each v ∈ Nu(H) do
16 dv(H\u,S) ← Updating(DP, v);
17 if dv(H\u,S) < k then
18 Push v to Q;

19 Delete u from H;

20 return H;

based on our colorful h-star core model without sacrificing

accuracy. Note that our graph reduction technique can be

considered as a preprocessing approach which can be used to

speed up the computation of (δΨ,Ψ)-core based approximate

h-clique densest subgraph algorithm.

Observation. Assume that there is a clique of size w in G,

and then the w-clique must be contained in an h-clique θ core,

here θ =
(
w−1
h−1

)
. This is because each node in this w-clique

participates in at least θ h-cliques in G, which provides a

nontrivial lower bound for the maximum h-clique core number

δΨ ≥ θ. Obviously, the larger a clique we can obtain is, the

tighter our lower bound will be. Thus, our goal is to find a

clique as large as possible. Since finding the maximum clique

is NP-hard, we can use a linear-time greedy maximum clique

algorithm proposed by Rossi et al. [31] to find a large clique.

The basic pruning rule. Suppose that we have a large clique

with size w computed by the greedy algorithm [31]. Then, we

have the following result.

Theorem 6. Given a graph G, and an h-clique Ψ, the h-
clique θ core CΨ

θ is contained in the (w − 1)-core, where w
is the size of a large clique of G and θ =

(
w−1
h−1

)
.

The above analysis inspires us to firstly reduce the input

graph G to a (w− 1)-core based on the fact that the (δΨ,Ψ)-
core is a subgraph of the (w−1)-core. Although shrinking the

graph G to a (w− 1)-core eliminates a number of nodes with

core number less than w − 1, the remaining graph may still

be very large, because the (w − 1)-core is often far from the

final h-clique densest subgraph. Therefore, we strive to seek a

more effective reduction technique on G to further prune the

(w − 1)-core. We can achieve this by applying our colorful

h-star core decomposition to further remove the unnecessary

nodes for computing the (δΨ,Ψ)-core.

The advanced pruning rule. Reconsider the colored graph

G and the h-clique θ core CΨ
θ . Clearly, each node of CΨ

θ

participates in at least θ cliques, thus it is also contained

in at least θ colorful h-stars. This is because nodes in a

clique must have different colors, suggesting that CΨ
θ must be

contained in the colorful h-star θ core CS
θ . Therefore, we can

use the colorful h-star θ core for pruning unpromising nodes.

Moreover, the following theorem shows that the colorful h-star

θ core pruning technique is more effective than the (w − 1)-
core pruning strategy.

Theorem 7. Given a graph G, and an integer h, the colorful
h-star θ core CS

θ is contained in the (w−1)-core of G, where
w is the size of a large clique of G, and θ =

(
w−1
h−1

)
.

Proof. Similar to the proof of Theorem 6, for each node v ∈
CS

θ , the following inequalities hold(
w−1
h−1

)
= cv(C

S
θ ,S) ≤ dv(C

S
θ ,S) ≤ dv(C

S
θ ,R) =

(
dv(C

S
θ )

h−1

)
.

As a consequence, we have dv(C
S
θ ) ≥ w − 1, thus CS

θ is an

induced subgraph of Cw−1.

Based on the above analysis, to approximate the h-clique

densest subgraph, we can progressively eliminate the un-

promising nodes and shrink the input graph G to a smaller

and smaller subgraph based on the following core-reduction

order

G ⊇ Cw−1 ⊇ CS
θ ⊇ CΨ

δΨ .

Our colorful h-star core based graph reduction technique is

shown in Algorithm 4. Algorithm 4 first applies the (w − 1)-
core reduction (lines 1-3), and then performs the colorful h-

star core pruning on the (w − 1)-core (lines 4-20). Note that

the algorithm uses a similar peeling procedure to iteratively

remove the nodes with colorful h-star degree smaller than θ
to compute the colorful h-star θ core (lines 6-20). It is easy

to show that the time complexity of Algorithm 4 is O(h ×
m). This is because the lines 1-3 takes O(m) time, and the

computing of the colorful h-star θ core uses O(h×m) time.

A heuristic approach. Since a colorful h-star is a good

relaxation of an h-clique, the colorful h-star core can also be

used to approximate the h-clique core. The h-clique δΨ core

has been proved to be a 1
h -approximation of H-CLIQUE-DS-

PROBLEM. Therefore, the colorful h-star δS core should also

provide a good approximation solution. That is to say, we can

obtain a heuristic algorithm by just computing the (δS ,S)-
core on G using Algorithm 3 as an approximation of the h-

clique densest subgraph. Although such a heuristic algorithm

is without theoretical guarantees, it can achieve similar and

even better approximation performance compared to the state-

of-the-art approximation solution, using much less time as

confirmed in our experiments.

VI. EXPERIMENTS

A. Experimental Setup

Datasets. We collect 11 large real-world graphs from two

different sources, including (1) Stanford Network Analy-

sis Project (SNAP) (http://snap.stanford.edu/data/), and (2)
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TABLE I
DATASETS

Dataset n = |V | m = |E| χ dmax

Nasasrb 54,870 1,311,227 38 275
Pkustk 87,804 2,565,054 54 131
Buzznet 101,163 2,763,066 62 64,289
Pwtk 217,891 5,653,221 42 179
DBLP 317,080 1,049,866 114 343
MsDoor 404,785 9,378,650 42 76
Digg 770,799 5,907,132 66 17,643
LDoor 909,537 20,770,807 42 76
Skitter 1,694,616 11,094,209 71 35,455
Orkut 2,997,166 106,349,209 79 27,466

LiveJournal 4,847,572 42,851,237 324 20,333

Network Repository (https://networkrepository.com/). These

datasets cover various domains, such as online social networks

(e.g., Buzznet, Digg, Orkut and LiveJournal), collaboration

networks (e.g., DBLP), internet topology graphs (e.g., Skitter)
and scientific computing networks (e.g., Nasasrb, Pkustk,

Pwtk, MsDoor and LDoor). The detailed statistics of the

datasets are summarized in Table I. In Table I, χ and dmax

denote the number of colors obtained by the greedy coloring

algorithm and the maximum degree of the graph respectively.

Algorithms. For the colorful h-star core decomposition, we

implement two algorithms HStarDP and HStarCD. The only

difference between them is that after removing a node,

HStarDP recomputes the colorful h-star degrees of its neigh-

bors using the proposed DP algorithm, while HStarCD uses

the proposed updating technique to update the colorful h-

star degrees. Since there are no other algorithms that can

be used to compute the colorful h-star core decomposition,

HStarDP is severed as a baseline for comparison. For the

h-clique densest subgraph problem, we compare our algo-

rithms with three state-of-the-art approximation algorithms

which are (1) SeqSamp [25], (2) SeqSamp128 [25], and (3)

CoreApp [22], and an exact solution Exact [25] using the

max-flow technique. Since the approximation performance

of SeqSamp++ relies on the number of iterations [25], we

implement two versions of SeqSamp++ with the number of

iterations T = 1 and T = 128 for comparison, denoted by

SeqSamp and SeqSamp128 respectively. CoreApp is the h-

clique core based approximation algorithm which can obtain

a 1/h approximation [22]. For these three baseline algorithms,

we use the original C++ implementations in our experiments.

We implement our two algorithms: (1) HStarPP which first

performs our colorful h-star core based pruning on G, and

then calls CoreApp on the reduced graph; and (2) HStarMPP
which is the heuristic approach using the (δS ,S)-core as an

approximation solution. Instead of getting the (δS ,S)-core by

performing HStarCD on G, we also implement a subroutine

HStarMB which computes the core directly by using binary

search. HStarMB tests a possible core value each time to find

δS , and adjusting its lower bound and upper bound according

the results of tests. When the subroutine terminates, it will

return δS and a subgraph as the (δS ,S)-core. We implement

all our algorithms in C++. All experiments are conducted on a

Linux machine equipped with a 2.9GHz AMD Ryzen 3990X

CPU and 256GB RAM running CentOS 7.9.2 (64-bit).
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Fig. 8. Scalability of HStarCD
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Fig. 9. Memory overhead of HStarCD on different datasets (h = 4, 6)

Parameters. We have only one parameter h in our experi-

ments. Unless otherwise specified, we evaluate all algorithms

with a varying h from 3 to 9. In all our experiments, we set

time limit to 24 hours for each algorithm, and ”INF” for the

running time of any algorithm which exceeds 24 hours.

B. Results of the colorful h-star core decomposition

Runtime of different algorithms. In this experiment, we com-

pare the running time of HStarDP, HStarCD and HStarMB
on different datasets. Fig. 7 shows the results for h = 6. For

other h values, the results are consistent. From Fig. 7, we can

see that HStarCD is 2 to 7 times faster than HStarDP over all

datasets. For example, on LiveJournal, the total running time

of HStarDP is 200.3 seconds, while the HStarCD algorithm

equipped with the proposed updating technique takes only 53.2

seconds, which is around 4 times faster than HStarDP. These

results confirm our theoretical analysis shown in Sections III

and IV. Note that the performance of HStarMB is comparable

with that of HStarCD, and sometimes even slightly worse than

HStarCD. The reasons could be that HStarCD is already very

fast as its time complexity is O(hm), while the binary-search

method has an additional log factor although it does not need

to compute all the core numbers.
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Fig. 10. Running time of different algorithms with varying h from 3 to 9
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Fig. 11. Relative error (RE) of different algorithms with varying h from 3 to 9 (Points are missing where Exact runs out of 24 hours.)

Scalability. Here we evaluate the scalability of HStarCD
on 8 different datasets. Note that since HStarDP is clearly

worse than HStarCD, we do not show the results of HStarDP
in all the remaining experiments. Those 8 datasets can be

divided into two sets according to their number of edges:

four medium-sized graphs, which are DBLP, Pwtk, Digg, and

MsDoor and four massive graphs, including LDoor, Orkut,
Skitter, and LiveJournal. For each dataset, we generate four

subgraphs by randomly sampling nodes from 20% to 100%.

Fig. 8 shows the results of h = 4 and h = 6, and similar

results can also be observed with other parameters. As can

be seen, the running time of HStarCD increases smoothly as

the graph size increases on both medium-sized and massive

graphs. Moreover, all the curves are nearly linear, indicating

that our algorithm scales very well in practice. These results

also confirm the near-linear time complexity of our HStarCD
algorithm (i.e., its complexity is O(h×m)).

Memory overhead. We evaluate the memory usage of our

HStarCD algorithm on various datasets for h = 4 and h = 6
respectively. The results are shown in Fig. 9. Similar results

can also be observed for the other values of h. From Fig.

9, we can see that the memory cost of our algorithm is

insensitive w.r.t. h on all datasets. This is because O(hn) in

the space complexity is usually much smaller than O(m) (see

Table I) on real-world graphs. For the graphs with a relatively

large color number, such as DBLP and LiveJournal, the space

consumption is around 10 times higher than the graph size,

while for the other datasets, the space usage of HStarCD is

only slightly larger than the graph size. These results confirm

the near-linear space complexity of the HStarCD algorithm.

C. Results of the H-CLIQUE-DS-PROBLEM

In this subsection, we carry out a set of experiments

to evaluate the performance of five different algorithms for

solving the H-CLIQUE-DS-PROBLEM.

Running time. We plot the running time achieved by each

algorithm as a function of h varying from 3 to 9 on 4 datasets

in Fig. 10. The results on the other datasets are consistent.
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Fig. 12. The running time of HStarPP with varying h

As expected, the running time of all the five approximation

algorithms increases as h increases. We can clearly see that

both the colorful h-star core based algorithm (HStarPP) and

the heuristic approach (HStarMPP) are significantly faster

than the other competitors, and Exact takes the most time

on almost all datasets. In addition, we can also observe that

HStarMPP seems to be slightly faster than all other algorithms

(especially on LDoor and Orkut), but a little slower than

HStarPP on LiveJournal with h = 3, 4. The reason is that

HStarMPP needs to compute the entire colorful h-star core

decomposition, thus for a small h, HStarPP may be slightly

faster than HStarMPP. We can see that on LDoor, CoreApp
is already very fast for a small h, thus in this case it cannot be

significantly speeded up by our algorithms. Note that on most

datasets, SeqSamp, SeqSamp128 and Exact fail to terminate

within 24 hours for large h values. The reason could be

that the sampling based algorithms involve a time-consuming

procedure which runs a clique-counting subroutine twice to

first count the number of h-cliques and then sample the h-

cliques to be stored into memory. The exact solution runs

a more time-consuming max-flow algorithm, thus they can

not deal with large h values. Taking the Skitter dataset as an

example (Fig. 10(b)), SeqSamp, SeqSamp128 and CoreApp
consume 58.40, 279.42 and 33.14 seconds respectively, when

h = 5. However, under the same parameter setting, HStarPP
and HStarMPP take only 6.89 and 4.81 seconds respectively.

The HStarPP algorithm, for instance, improves the running

time over SeqSamp, SeqSamp128 and CoreApp by 8.5×,

40.5× and 4.8×, respectively. HStarMPP is even one order

of magnitude faster than CoreApp and SeqSamp, and nearly
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TABLE II
THE POWER OF PRUNING TECHNIQUES USED IN HStarPP (h = 6, 1K=1,000, 1M=1,000,000, 1G=1,000,000,000)

Dataset n = |V | m = |E| #Density=m/n Δ σ6: 6-clique density

G CS
θ CΨ

δΨ
G CS

θ CΨ
δΨ

G CS
θ CΨ

δΨ
CS

θ G CS
θ CΨ

δΨ

Nasasrb 54.9K 52.1K 1.6K 1.3M 1.3M 28.4K 23.90 24.13 17.50 5.13% 12.36K 12.99K 11.14K
Pkustk 87.8K 41.3K 396 2.6M 1.4M 9.1K 29.21 32.75 23.05 53.01% 25.90K 29.71K 95.19K
Buzznet 101K 33.8K 275 2.8M 2.2M 21.5K 27.31 65.04 78.23 66.63% 63.68K 191K 4.17M
DBLP 317K 114 114 1.0M 6.4K 6.4K 3.31 56.50 56.50 99.96% 13.31K 23.39M 23.39M
Digg 771K 23.4K 153 5.9M 2.9M 9.5K 7.66 125.26 62.29 96.96% 20.01K 658K 10.25M
Skitter 1.7M 3.0K 180 11.1M 222K 11.9K 6.55 73.87 66.24 99.82% 5.76K 2.66M 9.53M
Orkut 3.0M 693K 132 106M 50.4M 7.5K 35.48 72.70 56.77 76.87% 15.75K 64.80K 7.57M

LiveJournal 4.8M 483 385 42.9M 108K 73.7K 8.84 224.41 191.31 99.99% 1.70M 16.86G 10.72G

two orders of magnitude faster than SeqSamp128. The reason

is that our colorful h-star core based techniques are very

efficient for a relatively large value of h. These results confirm

that the proposed graph reduction technique is very effective

in speeding up the approximate h-clique densest subgraph

computation.

Approximation performance. We use the relative error (RE)

as a metric to evaluate the approximation performance of

different algorithms which is defined as |σ∗
h − σh|/σ∗

h, where

σ∗
h is the h-clique density of the h-clique densest subgraph

obtained by Exact and σh is an estimated value. To compute

the relative error, we run each approximation algorithm 100

times and then take the average value over the 100 runs as

the final result. Fig. 11 shows the relative errors of various

algorithms on 4 different datasets. Similar results can be

observed on the other datasets. Some points are missing on

large h values where the exact algorithm cannot get a solution

with 24 hours. Note that CoreApp and HStarPP achieve the

same relative error because they both return the (δΨ,Ψ)-core

as an approximation. From Fig. 11, we can see that the core-

based algorithms CoreApp and HStarPP can be more accurate

than SeqSamp on LDoor for all h values. The heuristic

algorithm HStarMPP also achieves a good approximation as

CoreApp, and it performs even better on Orkut for h = 3, 4.

Although SeqSamp128 can achieve a lower relative error, it is

very costly and cannot provide an approximation for a large

h, e.g., h = 6 on LiveJournal and h = 9 on Skitter and Orkut.
These results indicate that (1) SeqSamp128 is very accurate on

most datasets, but it is intractable on large graphs for large h
values; (2) the colorful h-star core based algorithms HStarPP
and HStarMPP produce high-quality results using much less

time.

The performance of HStarPP. Here we evaluate HStarPP
in terms of the running time and the graph size reduction for

h = 6 on Orkut and LiveJournal. Recall that HStarPP first

prunes the graph using the colorful h-star θ core CS
θ , and

then calls CoreApp to compute the h-clique δΨ core CΨ
δΨ to

achieve a 1
h -approximation solution. The runtime of HStarPP

includes the pruning time and the time spent on computing

CΨ
δΨ , denoted by PrunTime and CompTime respectively. Fig.

12 shows the time consumption of HStarPP on different

datasets. As can be seen, PrunTime is stable with an increasing

h from 3 to 9 on all graphs, while CompTime increases

significantly as h increases. For a small h, PrunTime and

CompTime are comparable, while for a large h, PrunTime
is dominated by CompTime. These results indicate that the

cost of HStarPP is mainly dominated by computing CΨ
δΨ , and

the pruning procedure is very efficient.

Table II shows the statistics of G , CS
θ and CΨ

δΨ . In Table

II, Δ = (n1 − n2)/n1 and σ6 is 6-clique density where

n1 = |V (G)|, n2 = |V (CS
θ )| which can be used to measure

the effectiveness of the pruning rule in HStarPP. From Table

II, we can see that our pruning strategy is very effective; it

can largely prune the nodes that are definitely not contained in

CS
θ , especially on LiveJournal, DBLP, Skitter and Digg where

Δ can achieve nearly 99.99%. Taking the LiveJournal dataset

as an example, after removing a large number of nodes from

the original graph (|V | = 4, 847, 572), our pruning technique

returns CS
θ with only 483 nodes, which is quite close to

the target subgraph CΨ
δΨ (385 nodes). In addition, CS

θ also

improves the density over the original graph by up to 17

times (DBLP, Digg and LiveJournal). On all datasets except

Buzznet and DBLP, the densities of CS
θ are higher than those

of CΨ
δΨ , suggesting that our colorful h-star core is indeed

very cohesive. Also, we can see that CS
θ can significantly

increase the clique density. On LiveJournal and Nasasrb, CS
θ

even achieves a higher clique density than CΨ
δΨ . These results

indicate that our colorful h-star core model can also provide

a very good approximation for the h-clique densest subgraph.

D. The effects of graph colorings

In this subsection, we study how graph colorings impact

the performance of the colorful h-star core decomposition

and qualities of the colorful h-star maximal core. Among all

graph coloring techniques, greedy coloring algorithms using

node-ordering heuristics to reduce the number of colors, turn

out to be the most efficient algorithms. Here are four popular

ordering heuristics studied in the recent literature [26]:

Degree: Coloring the nodes following a non-increasing

ordering of degree (break ties by node ID) [32].

Degen: Coloring the nodes following an inverse degeneracy

ordering [26]. Note that such an inverse degeneracy ordering

can be easily obtained by reversing the node-deletion ordering

of the core-decomposition algorithm [30].

FF: Coloring the nodes in the order they appear in the input

graph representation [32].

SD: Coloring an uncolored node whose colored neighbor

nodes use the largest number of distinct colors [33] .
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Fig. 13. Nodes’ distributions of colorful h-star cores based on different graph
colorings (Skitter)
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Fig. 14. Nodes’ distributions of h-clique cores

The nodes’ distribution. Fig. 13 shows the nodes’ distribution

of various colorful h-star k cores on Skitter for h = 3 and

6 when using different coloring algorithms. Note that, both

x-axis and y-axis are in log scale. Thus, the distribution of

colorful h-star core numbers generally follows a power-law

distribution when h = 3. As can be seen in Fig. 13, most nodes

have smaller colorful h-star degree and the maximum colorful

h-star core number δS gets larger with varying h from 3 to 6.

The nodes’ distributions are very similar in the settings of four

different coloring algorithms. A slight difference is that nodes

in Fig. 13(c) are more scattered. A possible reason is that the

FF heuristic uses the larger number of colors to color nodes

(see Table III), which makes a h-star more likely to be colorful

and each node participates in more colorful h-stars. In our

experiments, we set Degree as the default coloring algorithm

for HStarPP and HStarMPP, because Degree is much faster

than Degen (it needs to compute k-core decomposition) and

SD (it picks an uncolored node dynamically).

Fig. 14 shows the nodes’ distribution of different h-clique

k cores on Skitter and Orkut for h = 2, 3 and 6. Again,

the distribution of h-clique core number follows a power-

law distribution, thus most of nodes participate in less h-

cliques and are contained in a h-clique core with smaller core

number. In addition, we can also observe that 3-clique cores

(see Fig. 14(a)) and colorful 3-star cores (see Fig. 13(a)) have

the similar nodes’ distribution. However, the distributions for

h = 6 show slightly different situations: there are more nodes

with small 6-clique core number compared to nodes with small

colorful 6-star core number in Fig. 13. Even so, the two kinds

of distributions share the same trend when h values get larger.

Therefore, our colorful h-star core model can still be seen as

TABLE III
PERFORMANCE OF DIFFERENT COLOR ALGORITHMS

(Skitter, h = 6, H IS THE (δS ,S)-CORE)

n = |VH | m = |EH | χ σ6(H)

Degree 212 15,503 71 10.27M
Degen 213 15,609 75 10.28M
FF 233 15,145 101 10.08M
SD 213 15,600 68 10.31M
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Fig. 15. Performance of HStarMPP with various graph coloring tehcniques

a good approximation of h-clique core.

The performance of HStarMPP. We evaluate the perfor-

mance of HStarMPP in terms of the time consumption and

relative errors on Skitter in Fig. 15. In Fig. 15(a), DecomTime
and CompTime indicate the time cost taken for computing the

colorful h-star core decomposition and computing h-clique

density of (δS ,S)-core, respectively. The detailed statistics

are shown in Table III. As can be seen, SD consumes more

time than the other three coloring techniques. This is because

Degree, Degen and FF color nodes following a fixed order,

but SD selects an uncolored node dynamically based on the

number of distinct colors of their neighbors, which can be

very costly though it produces slightly higher quality colorings

(using smaller number of colors in Table III). For a large

h value, CompTime increases significantly since computing

the h-clique density involves counting the number of h-

cliques which runs very slow. In Fig. 15(b), we can see that

HStarMPP equipped with FF has a larger relative error. The

results suggest that the estimating precision of HStarMPP
seems to match the number of colors used in greedy coloring

algorithms shown in Table III, and the reason might be that

when less colors are used in coloring algorithms, a colorful

h-star has the high probability to be a h-clique, thus it can be

a good approximation of a clique. Overall, Degree is the best

method in terms of both runtime and approximation quality.

This is why we use Degree as a default coloring technique in

the proposed solutions.

E. Case Studies.

We extract a subgraph, namely DBLPs, from DBLP for case

studies. DBLPs, containing 3,545 nodes and 5,076 edges, is a

collaboration network of authors who published at least two

papers in the database (DB) and data mining (DM) related

conferences between 2010 and 2020. Here we perform three

queries for a given author’s name (in this case study, “Lei

Li” is used as an illustrative example) to compute the k-

core, the colorful 3-star core and the 3-clique densest subgraph

that contain this author on DBLPs (Fig. 16), respectively. As

depicted in Fig. 16(a), Dr. Lei Li is located in a 4-core. In

this subgraph, every author collaborated with at least four
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Fig. 16. The cohesive subgraphs found in DBLPs, based on k-core, (k,S)-
cores and triangle densest subgraph (S : colorful 3-star).

researchers over the period of ten years. The result for the

(k,S)-core is quite different from the result of k-core (Fig.

16(b)), and it is also more compact and cohesive than k-core.

The authors marked by red (i.e. Dr. Lei Li, Hanghang Tong

and Wei Fan) are group leaders or senior researchers. They

basically act as the “bridges” connecting their group with

others, which play an important role in joint work with other

authors. The triangle densest subgraph that contains Dr. Lei Li

shown in Fig. 16(c) exhibits a different semantic. The result

turns out to be a clique, which is also a subgraph of the (k,S)-
core. Researchers involved in this clique closely collaborated

with each other. However, such a clique structure cannot reveal

the collaboration relationships with the other groups. Thus,

compared to the k-core and the h-clique densest subgraph,

our colorful h-star core might be better to reveal the close

collaboration between different research groups.

VII. RELATED WORK

Cohesive subgraph models. A large number of cohesive

subgraph models have been proposed based on different cohe-

siveness measures [10]. Notable examples include k-core [21],

k-truss [13], maximal k-edge connected subgraph [19], and

maximal cliques [34]. k-core is a maximal subgraph among

all subgraphs in G, in which the degree of each node is at

least k [12], [21], [30]. Recently, such a concept was extended

to uncertain graph [1], [35], attributed graphs [36], [37], and

distance generalized cores [38]–[40]. A k-truss is a maximal

subgraph where each edge participates in at least k−2 triangles

[13], [14], [41]. A maximal k-edge connected subgraph is a

maximal subgraph such that any two nodes in that subgraph

have at least k edge disjoint paths connecting them [19], [20],

[42]. All the k-core, k-truss, and maximal k-edge connected

subgraph can be computed in polynomial time by a peeling-

style algorithm. A maximal clique is a maximal complete

subgraph. Finding all maximal cliques in a graph is a classic

NP-hard problem [34]. Practical algorithms for maximal clique

enumeration are often based on the classic Bron-Kerbosch

algorithm [29], [34]. The concept of maximal clique was also

extended to the context of uncertain graphs [43], [44]. In

addition, there also exist some other cohesive subgraph models

including query-biased density [3], [45], k-clique cores [22],

and k-(r, s) nucleus [46]–[49] (a generalization of k-core and

k-truss). Different from all the above models, our colorful h-
star core model can be considered as a relaxation of the k-

clique core model. Moreover, unlike the k-clique core, our

model can be computed in near-linear time.

The densest subgraph problem. The dense subgraphs prob-

lem has been widely studied [50]–[52]. Given a pattern (also

called motif), such a problem is to extract a subgraph which

maximizes the pattern density, i.e. the average number of pat-

terns on nodes. The most commonly studied density is average

degree, defined as m
n . Finding a subgraph that maximizes

the average degree was referred to as the densest subgraph

problem, which can be solved using a parametric maximum-

flow algorithm in polynomial time [50], [53]. Epasto et al.

studied the densest subgraph computation in evolving graphs

[51]. Qin et al. proposed an algorithm to find the top-k locally

densest subgraphs [54]. The concept of h-clique densest sub-

graph (H-CLIQUE-DS) was first introduced by Tsourakakis

[23] by extending the concept of the densest subgraph (DS)

and the triangle densest subgraph (TDS), which are special

cases for h = 2 and h = 3 respectively [23], [52]. The h-clique

densest subgraph problem (H-CLIQUE-DS-PROBLEM) aims to

find H-CLIQUE-DS among all subgraphs of G. Tsourakakis

et al. generalized the greedy 1
2 -approximation algorithm to

a 1
h -approximation algorithm for H-CLIQUE-DS-PROBLEM.

Raman et al. [24] investigated a higher-order variant of lo-

cally dense subgraph [54] based on triangle, called top-k
local triangle-densest subgraph discovery. Mitzenmacher et

al. proposed a randomized algorithm to identify an h-clique

dense subgraph [52]. Later in [22], the authors developed an

approximation solution based on the h-clique core. Recently,

Sun et al. introduced an alternative approach by sampling h-

cliques to save space [25]. In this paper, we also study the

h-clique densest subgraph problem. We propose a new graph

reduction technique based on our colourful h-star core which

is dramatically different from all the previous algorithms.

VIII. CONCLUSION

In this paper, we propose a new colorful h-star core model

to identify cohesive subgraphs in large real-world graphs. To

efficiently compute the colorful h-star cores, we develop a

novel DP based colorful h-star degree counting and updating

algorithms. We show that the colorful h-star core decomposi-

tion can be done in O(hm) time using O(hn+m) space. Based

on our colorful h-star core, we propose a graph reduction

technique to speed up an approximate k-clique densest sub-

graph mining algorithm. Moreover, we show that the colorful

h-star core with the maximum core number is also a very good

approximation of the k-clique densest subgraph. We conduct

extensive experiments on 11 large real-world graphs, and the

results demonstrate the efficiency, scalability and effectiveness

of the proposed solutions.
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