
High Performance Distributed OLAP on Property
Graphs with Grasper

Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang, Changji Li
Yichao Li, James Cheng

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{hzchen,bwwu7,sydeng7,chhuang,cjli,liyc,jcheng}@cse.cuhk.edu.hk

ABSTRACT
Achieving high performance OLAP over large graphs is a
challenging problem and has received great attention re-
cently because of its broad spectrum of applications. Existing
systems have various performance bottlenecks due to limita-
tions such as low parallelism and high network overheads.
This Demo presents Grasper, an RDMA-enabled distributed
graph OLAP system, which adopts a series of new system
designs to overcome the challenges of OLAP on graphs. The
take-aways for Demo attendees are: (1) a good understanding
of the challenges of processing graph OLAP queries; (2) use-
ful insights about where Grasper’s good performance comes
from; (3) inspirations about how to design an efficient graph
OLAP system by comparing Grasper with existing systems.
ACM Reference Format:
Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang,
Changji Li and Yichao Li, James Cheng. 2020. High Performance
Distributed OLAP on Property Graphs with Grasper. In Proceedings
of the 2020 ACM SIGMOD International Conference onManagement of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384685

1 INTRODUCTION
Graph data analytics has found many applications in indus-
try nowadays. As a result, many graph processing systems
have been proposed [9]. Most of these systems focus on of-
fline graph computation workloads like PageRank, BFS and
connected components, but relatively few are designed for
online analytical query processing (OLAP). Existing graph

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384685

databases such as Neo4J [4], Titan [1], JanusGraph [2], Tiger-
Graph [6] and OrientDB [5] still have room to improve in
terms of both latency (e.g., within milliseconds) and through-
put (e.g., 10K QPS) for processing large graphs as we re-
ported in [7]. These existing systems suffer from various
performance problems due to the challenges of graph OLAP
workloads listed as follows.
• Diverse query complexity: OLAP graph queries dif-
fer significantly in their complexity, e.g., from a simple
filtering on the property of a vertex to complicated
pattern matching. Thus, adaptive parallelism control
and load balancing are needed for processing different
queries.
• Diverse data access patterns: query operators (e.g.,
filter, traversal, count) usually have diverse access pat-
terns on data, which require different optimization
techniques (e.g., cache, indexes). It is challenging to
design a unified execution framework that can support
different query operations efficiently.
• High communication and CPU costs: a query may
involve complex execution logics such as graph tra-
versals that access a large portion of the graph, aggre-
gation that collects intermediate results to one place
through network, and joins that are CPU- and data-
intensive. Such complex logics often result in high
communication and computation overheads.

In this paper, we will demonstrate how to use Grasper [7],
a high performance graph database, to process various OLAP
workloads on large property graphs. We will show SIGMOD
attendees how Grasper addresses the aforementioned chal-
lenges with its new system designs by leveraging Remote
Direct Memory Access (RDMA). We design a visualization
panel so that users can see the details of how Grasper con-
structs the optimized execution plan for each query, how
the query engine processes incoming queries concurrently
with adaptive parallelism control, and how Grasper’s Expert
Model uses tailored optimizations to execute different query
operations. In addition, we will also demonstrate how RDMA
effects the system designs of Grasper to achieve low latency.
The Demo will explain (using effective visualizations) the

https://doi.org/10.1145/3318464.3384685
https://doi.org/10.1145/3318464.3384685

1

2

vid in-adj-list out-adj-list IDs of Property Keys Property Valueslabel

eid

3

null 2, 3, 4 1, 2

IDs of Property Keys label Property Values

1 null 1, 2

1, 4, 6 null 1, 3

[1:"marko", 2:29]1

[1:"vadas", 2:27]1

[1:"lop", 3:"java"]2

1|2 1 1 [1: 0.5]

6|3 1 2 [1: 0.2]

. . .

e_label map
knows 1
created 2

vtx_pty map
name 1
age 2
lang 3

e_pty map
weight 1String-ID

Map

Vertex
Region

Edge
Region

.

.

Normal Mem RDMA Mem

Graph Topology Info Property KV Store

vtx_label map
person 1

software 2

Figure 1: Data store in Grasper

design details of Grasper’s Expert Model and RDMA-aware
features, thereby providing SIGMOD attendees better in-
sights on how to design a high-performance distributed
graph OLAP system.

2 AN OVERVIEW OF GRASPER
We introduce the key designs and system components of
Grasper. Details can be found in Grasper’s full paper [7] and
homepage (http://www.cse.cuhk.edu.hk/systems/grasper/).

2.1 Design Goals
Grasper is designed for high-performance OLAP on large
property graphs. It uses RDMA to reduce the high network
communication cost and supports an RDMA-enabled native
PG storage. In designingGrasper, we have the following goals
in order to address the limitations of existing systems: (1) We
should design an efficient query execution model to guaran-
tee high utilization of CPU and network on various kinds of
OLAP workloads. (2) Due to the diversity of graph queries,
we should support both high parallelism (within a machine
and across machines) for processing heavy-workload queries
and high concurrency for processing as many queries simul-
taneously as possible. (3) We should avoid using external
databases or data stores, but design an integrated data store
tightly connected with the query execution engine to elimi-
nate the overheads of moving data from one system to an-
other. (4) The design of the data store should be native for
graph storage in order to support efficient graph operations
such as traversals. (5) The designs of the data store as well
as other system components should be RDMA-friendly.

2.2 Data Store
We use the property graph (PG) model to represent graph
data, where each vertex/edge in a PG can have a label and a
set of properties to describe itself. We divide the in-memory
space of each Grasper server into two parts: Normal Memory
and RDMA Memory, as shown in Figure 1. Normal Memory

Query: g.V().hasKey("lang").and(in().count().is(2),
 out("knows").has("name", "Tom")
).has("age", 20)
Step-objs

hasKey("lang").has("age",20) and(spawn)

and(merge)
in()

out("knows")

V()
21 3

3

7 8

4 5 6

2 3

count() is(2)

has("name","Tom")

DAG of a Query Seq

Barrier

Branch
31

87

654

Figure 2: Query plan construction.

is used to store those graph topology information that will be
accessed locally during query execution. RDMA Memory is
used to store those properties, in the form of key-value store,
which can be remotely accessed by other Grasper servers.

In such a hybrid data storage design, we use index-free
adjacency lists to support efficient traversal-based query
operations and use RDMA-enabled KVS to achieve low-cost
remote access on labels/properties through one-sided RDMA
READ. Each query engine only processes queries on its own
local partition, while cooperating with other remote engines
by messages sent by one-sided RDMA WRITE.

2.3 Query Plan
Grasper adopts Gremlin [3] as its query language but con-
structs its own query execution plan. To enable adaptive
parallelism control at query-step level inside a query, we de-
fine a new concept, Flow Type, to describe the parallel data
flow pattern of each query step according to its functionality.
There are three flow types:
• Sequential: receive and process onemessage at a time,
and then proceed to the next step directly. Sequential
steps can be processed in parallel safely.
• Barrier: collect messages from the previous steps and
performs a functional aggregation on the collected
data before proceeding to the next step.
• Branch: receive and process one message, then copy
and send the newly generated message to all sub-
queries, which can be processed concurrently.

Grasper follows a tree-based parsing rule to recursively
parse the query string step by step and construct the logical
query plan according to three optimization rules: (1) Decom-
position: to decompose branch-type query steps and process
them in parallel. (2) Combination: to combine contiguous
filter-based steps on vertices/edges/properties into one sin-
gle step to reduce the overheads of multiple scanning and
filtering. (3) Reordering: to reorder query steps with specific
constraints and move them to the front of the query so as to

(a)

(b)

1 2 3

4

3

65

7 8

1|1 2|4 1|1

1|1 1|0 1|0

1|1 3|3

1|1

Step 2: Expert: Filter

threads (local): 2,
execute() --> hasKey,
Cache: LRU,
Size: 1000,
Index: key->[...],
Route: Round Robin

Step 4: Expert: Traversal

threads (local): 1,
execute() --> in,
Cache: FIFO,
Size : 500,
Route: Static

Figure 3: (a) adaptive parallelism at query-step level;
(b) two expert examples for the query in Figure 2

generate less intermediate results. Based on the dependency
and order of each query step, we generate a directed acyclic
graph (DAG) to represent the query’s execution plan, as the
example shown in Figure 2.

2.4 Expert Model
Expert Model is the central idea of Grasper, which provides
a top-down query-specific mechanism to achieve low la-
tency and high throughput with high utilization of CPU
and network. It has the following three features: (1) adap-
tive parallelism control at the query-step level inside each
query; (2) tailored optimizations for various query steps ac-
cording to their own data access patterns; (3) locality-aware
thread binding and load balancing. In particular, we inte-
grate these features for each category of query steps (e.g.,
traversal-based query operations, filter-based query opera-
tions) into one expert, which is the physical query operator
that expertly handles the processing of the specific category.
Note that each category of query steps (e.g., has, hasKey and
hasValue) share similar functionalities.
Each expert maintains its own data structures (e.g., in-

dexes, cache) for tailored optimizations, its own execute()
function, and its own routing rules for out-going messages,
to handle the concurrent processing of its query steps. Note
that an expert may employ multiple threads to concurrently
process the query steps of multiple queries with shared opti-
mizations. Feature (1) in Expert Model ensures that the run-
time parallelism degree of an expert is adaptive according to
its load. Feature (2) in Expert Model improves the efficiency
of query processing, and Feature (3) handles the underlying
cache locality and load balancing among the threads physi-
cally, which are critical for achieving millisecond-level query
latency. Figure 3 shows how Expert Model looks like based
on the query in Figure 2, where Figure 3(a) depicts the paral-
lelism degree of each query step in the DAG in two query
engines and Figure 3(b) gives more runtime details of the
two experts at step 2 and step 4.

Table 1: Query latency (in msec)

LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 271 16.7 388 77.3 0.30 2.19 0.91 0.32
Titan 66985 13585 5.8E5 11947 0.71 25.9 2.88 1.32
J.G. 56206 9223 4.5E5 22420 0.83 14.5 2.99 1.17

AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 0.42 17.3 45.2 104 28.8 2.32 4.41
Titan 1.07 12.4 32341 2.1E5 43809 234 9.11 84.08
J.G. 1.34 8.70 27466 2.4E5 39155 276 5.61 84.71

Grasper
0

20

40

60

80

100

1.15
78.69

1.38

7.71

26.28

30.19

0.510.45
3.956.18
0.550.34

T
im

e
(m

s)

has (1)
both
in
hasLabel (1)
has (2)
out
in
hasLabel (2)
has (3)
not
groupCount 0 20 40 60 80 100 120 140 160 180

0

25

50

75

100

0

128

256

384

512

Running Time(s)

C
P
U

U
ti
li
za

ti
on

(%
)

N
et

(M
B
/s
)
a
v
g
.
pe
r
n
od
eCPU-Grasper Net-Grasper

1

Figure 4: (a) Query latency breakdown of Grasper; (b)
CPU and network utilization of Grasper

3 THE DEMONSTRATION PLAN
In this demo, we plan to show SIGMOD attendees: (1) the
superior performance of Grasper in terms of query latency
and system throughput on various graph OLAP workloads;
(2) a real-time monitor to display Grasper’s runtime sys-
tem status and resource utilization, in order to demonstrate
where Grasper’s high performance comes from; and (3) intu-
itive visualization to show Grasper’s real-time performance
and how Expert Model functions on each query to expertly
process different types of query steps.

Benchmarks and Set-up.Wewill use LDBC SNB [8] (i.e.,
IS1-IS4, IC1-IC4) and the benchmark (i.e., Q1-Q8) proposed
in [7] to evaluate Grasper on three large graph datasets. We
will deploy Grasper servers on a remote cluster and connect
it to a web-based front-end to support user interaction with
Demo attendees. The details of the benchmarks and cluster
setup are given in [7].

3.1 System Comparison
This part of theDemowill present the performance of Grasper
comparing with existing systems (e.g., Neo4J [4], Titan [1],
JanusGraph [2], TigerGraph [6], OrientDB [5], etc.) on single-
query latency aswell as batch-processing throughput. Table 1
briefly shows the query latency of Grasper comparing with
Titan and JanusGraph on two benchmarks (more evaluation
results are reported in [7]). We can observe that when queries
are more complex, Grasper’s performance advantages are
more obvious. Our Demo will aim to explain (with visualized
details) where the performance benefits of Grasper come
from by showing how the existing systems’ limitations and
performance bottlenecks are addressed by Grasper’s system
designs. For example, Figure 4 provides some insights of
Grasper’s performance: (a) step-level latency breakdown of

average

: 13.672ms

Figure 5: A screenshot of the Grasper Demo front-end

an example query and (b) cluster CPU & network utiliza-
tion running on a mixed workload. We will also show these
statistics together with those of the other systems to Demo
attendees to explain the necessary designs of an efficient
graph OLAP system.

3.2 Grasper’s Front-End Interface
The Demo system will provide a graphical interface for al-
lowing attendees to interact with Grasper, so as to help them
understand the key design idea of Grasper and how Expert
Model works with the exact optimization set-up to speed
up the query processing for specific query steps. As shown
in Figure 5, on the right control panel, attendees can in-
put a single query or a batch of queries in a file for batch-
processing.

For single-query processing, we will visualize the DAG of
current query to show the specific optimized query plan with
detailed runtime information (e.g., the parallelism degree of
each query step on all workers, the tailored optimizations
applied in corresponding experts, the message routing strat-
egy, etc.), and dynamically update the job progress of current
query in real time (marked as green/red for ongoing/finished
steps) to illustrate the mechanism and effectiveness of Expert
Model. When the current query is completed, we will report
its latency and also return the final query results from the
server side to the front-end’s console to attendees for better
understanding of the complexity of one OLAP query on a
large property graph.

In batch processing mode, another panel will show up to
display the real-time throughput of the whole system, which

provides an intuitive view of the performance of Grasper
throughout the process of query processing. We will also dis-
play a detailed view of the current system configuration on
the top of the control panel, where attendees can manually
configure the system setting (e.g., enable/disable core bind-
ing, cache, etc.) to observe the performance benefits brought
from various system components, optimization techniques,
and their respective trade-offs (if any). In addition, the dis-
play panel will also visualize the real-time CPU and network
utilization of the cluster occupied by Grasper servers, to
demonstrate how efficient Grasper is in terms of resource
utilization.
Acknowledgments. We thank the reviewers for their valu-
able comments. This work was supported in part by ITF
6904945 and GRF 14222816.

REFERENCES
[1] 2015. TITAN. http://titan.thinkaurelius.com/.
[2] 2017. JanusGraph. http://janusgraph.org/.
[3] 2019. Gremlin. http://tinkerpop.apache.org/gremlin.html.
[4] 2019. Neo4j. https://neo4j.com/.
[5] 2019. OrientDB. https://orientdb.com/.
[6] 2019. TigerGraph. https://www.tigergraph.com/.
[7] Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James

Cheng, Jian Zhang, Yifan Hou, and Xiao Yan. 2019. Grasper: A High
Performance Distributed System for OLAP on Property Graphs. In ACM
Symposium on Cloud Computing. 87–100.

[8] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, An-
drey Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz.
2015. The LDBC Social Network Benchmark: Interactive Workload. In
SIGMOD. 619–630.

[9] Da Yan, Yuanyuan Tian, and James Cheng. 2017. Systems for Big Graph
Analytics. Springer. https://doi.org/10.1007/978-3-319-58217-7

http://titan.thinkaurelius.com/
http://janusgraph.org/
http://tinkerpop.apache.org/gremlin.html
https://neo4j.com/
https://orientdb.com/
https://www.tigergraph.com/
https://doi.org/10.1007/978-3-319-58217-7

	Abstract
	1 Introduction
	2 An Overview of Grasper
	2.1 Design Goals
	2.2 Data Store
	2.3 Query Plan
	2.4 Expert Model

	3 The Demonstration Plan
	3.1 System Comparison
	3.2 Grasper's Front-End Interface

	References

