
Optimizing Declarative Graph�eries at Large Scale
Qizhen Zhang, Akash Acharya, Hongzhi Chen§, Simran Arora, Ang Chen‡, Vincent Liu and Boon Thau Loo

University of Pennsylvania, §The Chinese University of Hong Kong, ‡Rice University

ABSTRACT
This paper presents GraphRex, an e�cient, robust, scalable,
and easy-to-program framework for graph processing on
datacenter infrastructure. To users, GraphRex presents a
declarative, Datalog-like interface that is natural and ex-
pressive. Underneath, it compiles those queries into e�cient
implementations. A key technical contribution of GraphRex
is the identi�cation and optimization of a set of global op-
erators whose e�ciency is crucial to the good performance
of datacenter-based, large graph analysis. Our experimen-
tal results show that GraphRex signi�cantly outperforms
existing frameworks—both high- and low-level—in scenar-
ios ranging across a wide variety of graph workloads and
network conditions, sometimes by two orders of magnitude.

CCS CONCEPTS
• Information systems → Data management systems;
Relational parallel and distributedDBMSs; •Computer
systems organization → Distributed architectures;

KEYWORDS
Distributed systems; graph analytics; Datalog optimizations;
datacenter networks

ACM Reference Format:
Qizhen Zhang, Akash Acharya, Hongzhi Chen§, Simran
Arora, Ang Chen‡, Vincent Liu and Boon Thau Loo.
2019. Optimizing Declarative Graph Queries at Large Scale. In 2019
International Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3299869.3300064

1 INTRODUCTION
Over the past decade, there has been a proliferation of graph
processing systems, ranging from low-level platforms [20,
34, 43, 45] to more recent declarative designs [54]. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300064

 0.1

 1

 10

 100

 1000

 10000

Twitter (2B) Friendster (3.6B) UK2007 (3.7B) ClueWeb (42.6B)

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

84.98

293.47
499.35

30.02
53.35

148.15

5201.43

12.44
21.94

87.998

1102.01

3.03
5.47

12.31

228.4

O
ut

 O
f M

em
or

y

Figure 1: Performance comparison (log scale) of SSSP
between declarative systems: BigDatalog and Graph-
Rex, and low-level graph systems: Giraph and Power-
Graph on large graphs. All systems are run in a data-
center with 6 TB RAM and 1.6 K cores in aggregate.
users can deploy these systems in a variety of contexts, the
largest instances routinely scale to multiple racks of servers
contained in vast datacenters like those of Google, Facebook,
and Microsoft [51]. This trend of large-scale distributed data
processing is likely to persist as data continues to accumulate.
These massive deployments are in a class of their own:

their size and the inherent properties of the datacenter infras-
tructure present unique challenges for graph processing. To
highlight these performance issues on practical workloads,
Figure 1 illustrates, for multiple graph processing systems
and billion-edge graphs, the running time of a single-source
shortest path (SSSP) query on a representative datacenter
testbed. We tested four systems: (1) BigDatalog [54], a re-
cent system that provides a declarative interface to Spark; (2)
Giraph [20], a platform built on Hadoop that powers Face-
book’s social graph analytics; (3) PowerGraph [28], a highly
optimized custom framework; and as a sneak preview of the
space of possible improvement (4) GraphRex, our system for
large-scale datacenter-based graph processing. As the results
demonstrate, while the three existing systems are capable of
scaling to billion-edge workloads, our approach leads to up
to two orders of magnitude better performance.
The above results barely scratch the surface of optimiza-

tion opportunities for large-scale graph queries in datacen-
ters. We note two signi�cant opportunities that are underex-
plored in previous work:
Opportunity #1: The impact of graph workload characteristics.
Real-world graphs exhibit particular qualities that incur se-
rious performance degradation if ignored. One example is a
power-law distribution with high skew, where most vertices

are of fairly low degree, but a few vertices have very high
edge counts. Even within a single execution, the optimal
query plan may then di�er depending on which vertex is
being processed. Another is a proclivity to produce redun-
dant data, e.g., in the case of label propagation where nodes
can often reach each other via many paths. Each of these
presents opportunities for optimization.
Opportunity #2: The impact of datacenter architecture. Per-
formance can also depend heavily on the underlying infras-
tructure. Consider the rack-based architecture of Facebook’s
most recent datacenter design [14]. Racks of servers are con-
nected through an interconnection network such that a given
server’s bandwidth to another can di�er by a factor of four
depending on whether the other server is in the same rack
or not. Though this type of structure is ubiquitous in today’s
datacenters due to practical design constraints [14, 30, 56],
existing processing systems (e.g., [20, 28, 54]) have largely ig-
nored these e�ects, typically assuming uniform connectivity
that is not the case in modern datacenters.
The GraphRex system. To exploit these two opportunities,
this paper explores a suite of optimization techniques speci�-
cally designed to ensure good performance for massive graph
queries running in modern datacenters. We have developed
GraphRex (Graph Recursive Execution) that signi�cantly
outperforms state-of-the-art graph processing systems.
The performance of GraphRex stems, in part, from the

high-level language it presents. It compiles Datalog queries
into distributed execution plans that can be processed in
a massively parallel fashion using distributed semi-naïve
evaluation [42]. While prior work has noted that declara-
tive abstractions based on Datalog are natural �ts for graph
queries [8, 54], these systems fall short on constructing e�-
cient physical plans that (1) scale to large graphs that can-
not �t in the memory of one machine, and (2) scale to a
large number of machines where the network is a bottleneck.
GraphRex goes beyond these systems by combining tradi-
tional query processing with network-layer optimizations. It
aims to achieve the best of both worlds: ease of program-
ming using a declarative interface and high performance on
typical datacenter infrastructure. Our key observation is that
these two goals exhibit extraordinary synergy.

We note that this synergy comes with a requirement: that
the graph processing system be aware of the underlying
physical network. In a private cloud datacenter where the
operator has full-stack control of the application and infras-
tructure, visibility is trivial. In a public cloud, the provider
would likely expose GraphRex “as a service” in order to
abstract away infrastructure concerns from users.
Our contributions.We make the following contributions
in the design and implementation of GraphRex:

(i) Datacenter-centric relational operators for large-scale graph
processing. We have developed a collection of optimizations
that, taken together, specialize relational operators for data-
center-scale graph processing. The scope and e�ect of these
optimizations is broad, but their overarching goal is to reduce
data and data transfer, particularly across “expensive” links
in the datacenter. These techniques, applied using knowl-
edge of the underlying datacenter topology and semantics
of relational operators in GraphRex’s declarative language,
allow us to signi�cantly outperform existing graph systems.
(ii) Dynamic join reordering. We also observe that graph
queries may require changing join reorderings as join selec-
tivity is heavily in�uenced by graph degrees; and degrees can
vary signi�cantly across a graph. Inspired by prior work on
pipelined dynamic query reoptimizations [16], we develop
a distributed join operator that can dynamically adapt to
changing join selectivities as the query execution progresses
along di�erent regions of a graph.
(iii) Implementation and evaluation. We have implemented a
prototype of GraphRex. Based on evaluations on the Cloud-
Lab testbed, we observe that GraphRex has dominant e�-
ciency over existing declarative and low-level systems on a
wide range of real-world workloads and micro-benchmarks.
GraphRex outperforms BigDatalog by factors of 11–109⇥,
Giraph by factors of 5–26⇥, and PowerGraph by 3–8⇥. In
addition, we �nd thatGraphRex is more robust to datacenter
network practicalities such as cross-tra�c and link degrada-
tion because our datacenter-centric operators signi�cantly
reduce the amount of tra�c traversing bottleneck links.

2 BACKGROUND
Today’s graph processing processing systems span multiple
layers. Applications are written in low-level languages like
C++ or Java; they run on frameworks including GraphX, Gi-
raph; which in turn run in large datacenter deployments like
those of Google, Amazon, Microsoft, and Facebook. These
systems are powerful, e�cient, and robust, but di�cult to
program and tune [11, 54].

2.1 Declarative Graph Processing
GraphRex uses Datalog as a declarative abstraction, drawing
inspiration from recent work [48, 54]. Datalog is a particu-
larly attractive choice for writing graph queries because of
its natural support for recursion—a key construct in a wide
variety of graph queries [38, 53].

Datalog rules have the form p :- q1,q2, ...,qn , which can
be read informally as “q1 and q2 ... and qn implies p.” p is
the head of the rule, and q1,q2, ...,qn is a list of literals that
constitutes the body of the rule. Literals are either predicates
over �elds (variables and constants), or functions (formally,
function symbols) applied to �elds. The rules can refer to

Racks of
Servers

Oversubscribed
Network

Rack Switches

Figure 2: A canonical datacenter network. Racks con-
tain dozens of servers connected by a single switch.
Racks then connect via an oversubscribed network.

each other in a cyclic fashion to express recursion, which
is particularly useful for graph processing. We adhere to
the convention that names of predicates, function symbols
and constants begin with a lower-case letter, while variable
names begin with an upper-case letter. We use predicate,
table, and relation interchangeably.

Query 1: Connected Components (CC)
cc(A,min <A>) :- e(A,_)
cc(A,min <L>) :- cc(B,L), e(B,A)

Our example above shows a classical graph query that
computes connected components in a graph. This query
takes a set of edges e as inputs, with e(X,Y) representing
an edge from vertex X to vertex Y, and computes a cc tuple
for each vertex, where the �rst �eld is the vertex and the
second is a label for the vertex. The �rst rule initializes the
label of each vertex with its vertex id. In the second rule,
cc(A,min<L>) means that the tuples in cc are grouped by A
�rst, and in each group, the labels L are aggregated with min.
The rule is recursively evaluated so that the smallest label is
passed hop by hop until all vertices in the same connected
component have the same label. An equivalent program in
Spark requires upwards of one hundred lines of code.
Partitioning graph data. Distributed graph processing re-
quires speci�cation of how the graph data and relations are
partitioned. Graph partitioning maps vertices (or edges) to
workers, and is useful when queries have consistent and pre-
dictable access patterns over data. In this paper, we assume a
default graph partitioning where vertex id is hashed modulo
the number of workers, although our optimizations are not
restricted to, and indeed are compatible with, more advanced
graph partitioning mechanisms. Relation partitioning refers
to cases where an attribute of a relation is selected as par-
tition key and all of its tuples with the same partition key
are put in the same location. For example, in Query 1 (CC),
cc has two attributes so it has two potential partitionings:
cc(@A,B) and cc(A,@B), where @ denotes the partition key.

2.2 Graph Queries in Datacenters
A crucial component for performance is an understanding of
the deployment environment, which in the case of today’s
largest graph applications, refers to a datacenter. Modern
datacenter designs, e.g., those of Google [56], Facebook [14],
and Microsoft [30], have coalesced around a few common
features, depicted in Figure 2, which are necessitated by
practical considerations such as scalability and cost.
At the core of all modern datacenter designs are racks of

networked servers [23, 41, 56]. The servers come in many
form factors, but server racks typically contain a few dozen
standard servers connected to a single rack switch that serves
as a gateway to the rest of the datacenter network [49]. The
datacenter-wide network that connects those rack switches
is structured as a multi-rooted tree, as shown in Figure 2.
The rack switches form the leaves of those trees [39].

The above architecture leads to several de�ning features in
modern datacenter networks. One example: oversubscription.
While recent architectures have striven to reduce oversub-
scription [10, 30], fundamentally, cross-rack links are much
longer and therefore more expensive (as much as an order of
magnitude) [41, 62]. As such, the tree is often thinned imme-
diately above the rack level, i.e., oversubscribed, and it may
be oversubscribed even further higher up. This is in contrast
to racks’ internal networks, which are well connected.

The result is that servers can often overwhelm their rack
switch with too much tra�c. A 1:� oversubscription ratio
indicates that the datacenter’s servers can generate �⇥ more
tra�c than the inter-rack network can handle.1 In essence,
these networks are wagering that servers either mostly send
to others in the same rack, or rarely send tra�c concurrently.
In this way, network connectivity is not uniform. Instead, dat-
acenter networks are hierarchical, and job placement within
the network a�ects application performance. Ignoring these
issues can lead to poor results (see Figure 1).

3 GRAPHREX QUERY INTERFACE
The goal of GraphRex is to provide a high-level interface
with the performance of a system tuned for datacenters. To
that end, GraphRex presents a Datalog-like interface and
leverages an array of optimizations that reduce data and data
transfer. We illustrate our variant of Datalog with several
graph queries, most of which involve recursion:

Query 2: Number of Vertices (NV)
vnum(count <A>) :- e(A,B)

1Typical rack-level oversubscription ratios can range from 1:2 to
1:10 [14, 56]. Some public clouds strive for 1:1, but these are in the
minority [58]. Regardless, as we show in Section 6, other datacenter
practicalities can result in e�ects similar to oversubscription.

Query 3: PageRank (PR)
deg(A,count) :- e(A,B)
pr(A, 1.0) :- deg(A,_)
pr(A ,0.15+0.85* sum <PR/DEG >)[10] :- pr(B,PR),

deg(B,DEG), e(B,A)

Query 4: Same Generation (SG)
sg(A,B) :- e(X,A), e(X,B), A!=B
sg(A,B) :- e(X,A), sg(X,Y), e(Y,B)

Query 5: Transitive Closure (TC)
tc(A,B) :- e(A,B)
tc(A,B) :- tc(A,C), e(C,B)

Query 2 counts the number of vertices in a graph (NV). It
takes as input all edge tuples e(A,B) and does a count of all
unique vertices A. Query 3 computes page ranks of all vertices
in a graph (PR). Query 4 returns the set of all vertices that
are at the same generation starting from a vertex (SG). Query
5 computes standard transitive closure (TC). The Datalog
variant we use has similar syntax to traditional Datalog with
aggregation, where aggregate constructs are represented as
functions with variables in brackets (<>).
One extension we make to Datalog can be seen in PR:

a stopping condition denoted as “[..]” in the rule head, for
rules that may not converge to a �xpoint using traditional
incremental evaluation of aggregates in recursive queries [26,
38, 57, 59]. For example, in PR, instead of stopping the query
when no more new tuples are generated, we can impose a
bound on the number of iterations, e.g., “[10]”.

We also note that some of our queries involve multi-way
joins. For example, SG is a “same generation” query that gen-
erates all pairs of vertices that are of the same distance from
a given vertex (for example, given the root of a tree, SG gen-
erates a tuple for each pair of vertices which have the same
depth. If the graph has cycles, a vertex can appear in di�er-
ent generations, signi�cantly increasing query complexity).
In existing distributed Datalog systems, the syntactic order
is the sole determinant for the evaluation strategy of these
joins—they are simply evaluated “from left to right” [54, 59].
This is because in a distributed environment, there is no
global knowledge of relations and no easy way to �nd the
optimal join order. As we will show later, this naïve order is
suboptimal in many cases, and GraphRex improves on this
by dynamically picking the best join order. Note that PR also
has a multi-way join, but there is no need of join reordering
for this particular case, because the cardinalities of pr, deg
and e never change in semi-naïve evaluation.

4 QUERY PLANNING
Figure 3 shows the overall architecture of GraphRex, con-
sisting of a centralized coordinator and set of workers. The
coordinator �rst applies a graph partitioning, so that each

������ ������#��

�����������

��������

-�����

����!��� ���
�!������

��������������#��

-�����

����!��� ���
�!������

��������������#��

C

���"

��������������

�������
	���

�!�
�����

�!�
�����

�
�
��
�
��
��
 �

��
��
��
�
��

Figure 3: The GraphRex architecture. A compiler gen-
erates a logical plan from a Datalog query (4.1). The
static optimizer then constructs from the logical plan
a datacenter-centric execution speci�cation (4.2) that
is optimized (5) before the�nal translation to and eval-
uation of the physical plan by workers. Grey lines de-
scribe dissemination of infrastructure con�gurations
and black lines communication for query execution.

worker has a portion of the graph. Then during query exe-
cution, the coordinator’s Query Compiler translates queries
into a logical plan.

A Static Optimizer then generates an execution speci�-
cation from that logical plan. Execution speci�cations are
similar to physical plans, but include our datacenter-centric
global operators. The �nal translation of these operators to
concrete physical operators is left until runtime, and depends
on both the placement of workers in the datacenter (which is
obtained through an infrastructure con�guration) and data
characteristics. Each worker’s physical plan may di�er. We
discuss this process in Section 5.

Finally, each worker runs the Distributed Semi-Naïve (GR-
DSN) algorithm designed for very �ne-grained execution,
which is a distributed extension of the semi-naïve algorithm
used in Datalog evaluation [42]. In semi-naïve evaluation
(SN), tuples generated in each iteration are used as input in
the next iteration until no new tuples are generated. The
distributed variant relaxes the set operations by allowing for
tuple-at-a-time pipelined execution. GR-DSN is designed for
graph queries to allowmassively parallel execution and tuple-
level optimizations. We include its details in Appendix B.
The above process occurs directly at the workers, which

receive the execution speci�cation, generate a local physical
plan, and execute it, all with the help of two components:
(1) a Vertex-level Executor that uses GR-DSN to execute the
speci�cation until a �xpoint; and (2) a Runtime Optimizer
that optimizes each global operator locally.

4.1 Logical Plan
From the query, the �rst step in processing it is to generate a
logical plan. In GraphRex, a logical plan is a directed graph,

,��(��)�

∏(�*�����(�

����(�*�

∏(�*�����*��
⋈
����)�*��,��)��(�

∏)�(�*��*

(a) Query 1 (CC)

⋈
!�(����!�(����

����"
∏���

,�!������

!�)����!�(���� ,�!�(��)�

⋈
∏��� ∏(���)��

(b) Query 4 (SG)

Figure 4: Logical plans of CC (a) and SG (b).

where nodes represent relations or relational operators, and
edges represent data�ow. Figures 4a and 4b show logical
plans for Queries 1 (CC) and 4 (SG), respectively.
An important part of logical plan generation in Graph-

Rex is a Vertex Identi�cation phase, in which the compiler
traverses the plan graph starting from the edge relations and
marks attributes whose types are vertices with a * symbol.
These attributes are candidates for being the partition key.
As an example, in Figure 4a, since both attributes in the
input edge relation e(A,B) represent vertices, they are both
marked with the * symbol. Likewise, all attributes that have a
dependency to either vertex attribute A or B are also marked.

By the time we generate a physical plan, only one partition
attribute will be chosen for every relation. Later, we will
denote the selected attribute by prepending with an @ symbol.
At this stage, we can make the decision for two simple cases.
First, if a relation r only has one vertex attribute, then it
is trivially partitioned by that attribute. Second, the edge
table e is partitioned on the �rst key by default so that each
vertex maintains the list of outgoing neighbors. This is a
convenient placement for many practical graph applications,
such as PageRank, SSSP, that only require each vertex to
know its outgoing neighbors. All other partitioning decisions
are made during the placement of the SHUFF and ROUT
operators described in the following section.
4.2 Execution Speci�cation
Traditional query planning proceeds directly from a logical
plan to a physical plan. In GraphRex, we add an additional
step to help identify opportunities for datacenter-centric op-
timization. The core of this process is the addition of Global
Operators to the logical plan to form what we term an exe-
cution speci�cation. These operators are special in that they
govern communication across workers; oversubscription, ca-
pacity constraints, and congestion mean that their e�cient
execution is a primary bottleneck in processing large graphs.
We describe each Global Operator below.
4.2.1 Join (JOIN)
Joins are one such operation that frequently incurs com-
munication in graph processing. In Datalog, (natural) joins
are expressed as conjunctive queries. GraphRex evaluates
them as binary operations; multi-way joins are executed as a
sequence of binary joins. Graphically, we represent these as:

JOIN

In the case of binary joins, we simply insert a JOIN in
lieu of the logical operator Z. Recursive joins, where one
or more of the inputs are recursive predicates, are handled
similarly to BigDatalog [54]. Namely, if the recursion is lin-
ear, the non-recursive inputs are loaded into a lookup table
and streamed. If the recursion is non-linear, we load all but
one of the recursive inputs into a lookup table and stream
the remaining input. This enables us to reduce non-linear
recursion to linear recursion from the viewpoint of a single
new tuple. Figure 5 shows an example of a recursive join.
Multi-way joins require additional handling, as di�erent join
orders can lead to drastically di�erent evaluation costs (Sec-
tion 5.4). In GraphRex, multi-way joins are implemented
as a sequence of binary joins, where the order is chosen
at runtime and per-tuple. Existing distributed Datalog sys-
tems arbitrarily evaluate ‘left-to-right’ [54, 59]. We represent
this choice in the execution speci�cation by enumerating all
possible decompositions of the multi-way join and routing
between them dynamically with the next operator.
4.2.2 Routing (ROUT)
The ROUT operator enables the dynamic and tuple-level
multi-way join ordering mentioned above. ROUTs take a
tuple and direct it to one among multiple potential branches
in the execution speci�cation. This operator is only used in
conjunction with multi-way joins, and is represented as:

ROUT[X,Y]

For example, Figure 6 shows the speci�cation for Query 4
(SG) where the multi-way join e Z sg Z e in Figure 4b is
broken into (e Z sg) Z e and e Z (sg Z e). We generate
plans for the two possible orderings and insert a ROUT op-
erator that takes A and B as input to decide which will result
in better performance. We discuss how the ROUT operator
makes that decision in Section 5.4.
4.2.3 Aggregation (AGG)
Another important Global Operator is AGG, which aggre-
gates tuples. There are three types of aggregation in Graph-
Rex, two of which are mapped to Global Operators. The one
type of aggregation that is not mapped is purely local aggre-
gation, which operates on tuples with the same partition key,
for instance, in the left branch of Figure 5 (in the projection).
This type of aggregation does not need its own Global Op-
erator as its evaluation does not incur communication. The
other two variants are represented as follows:

AGG[@X,min<L>] AGG[min<L>]

Left to right, (1) also operates at each vertex, but requires
shu�ing of inputs to compute the relation, and (2) covers

∏(��������

����(���

∏(���
�
�	

����)�������)�(�

�������(���,

���(�)� �����(���1����,

∏(������

∏)�(�����

Figure 5: Execution
speci�cation of CC

�!�)�(��!�)���

���(!
∏��(

��!����(�

�!�)��� ��!�)�*�

	��������*,����

����

�!�*�(�

����

∏��(

��!)��*� �!�*�(�

	������)�(,

����

�!�)���

����

∏��(���
���(,

	�����)��*, 	������)�*,

∏)���*�(∏)���*�(

Figure 6: Execution speci�cation of SG

)�������

∏���

*(�������

∏���
⋈
)�������*(�������

∏�����

Figure 7: Logical
plan of TC.

global aggregation, where a single value is obtained across
the entire graph. For (1), the semantics are similar to a purely
local aggregation, but as communication is required, Graph-
Rex will eventually rewrite the speci�cation in order to re-
duce the data sent across the oversubscribed datacenter in-
terconnect. The right branch of Figure 5 demonstrates this
case. For (2), aggregation is instead �nalized at the coordi-
nator. For example, Query 2 (NV) computes the number of
vertices in the graph using a global aggregator. That value
is eventually collected by the coordinator and potentially
redistributed to all workers for subsequent use.
4.2.4 Shu�le (SHUFF)
Last, but arguably most important is the SHUFF operator
that encompasses all network communication in GraphRex.

SHUFF[X,@Y]

SHUFFs are inserted into the execution speci�cationwhen-
ever it is necessary to move tuples from one worker to an-
other between relations. Their placement is therefore closely
integrated with the process of relation partitioning, which in-
stantiates the partition attribute (@) from the set of partition
candidates (*) and inserts SHUFF operators where necessary.

Conceptually, there are two scenarios that require a SHUFF.
The �rst is when the tuples of relation r are not generated
in the location speci�ed by r’s partition key. An example of
this is shown in Figure 5. The JOIN operation generates cc
tuples that have a distinct partition key (denoted by the @
sign) from the join key B. This results in the insertion of a
SHUFF operator after the join. The second scenario is when
the input relations to an operator are not partitioned on the
same attribute, such as the inputs to the join operator in
Figure 8a. In the example, there is a join operator for tc and
e on attribute C. If we partition tc on its �rst attribute, as in
Figure 8a, a SHUFF is needed to repartition the tuples in tc
on the second attribute so that the join can be evaluated.

In relation partitioning, the optimizer checks every possi-
ble partitioning and selects the one that incurs the minimum
number of SHUFFs. The details of partitioning algorithm
are shown in Appendix A. As a heuristic, we assume that
recursive rules are executed many times. To demonstrate

�������

∏���

,�������

∏���

�������

,�������

∏�����

����

�����(����)

�����(����)

(a)

�������

∏���

,�������

∏���

�������,�������

∏�����

����

�����(����)�����(����)

(b)

Figure 8: Two potential partitionings for TC.

this, Figure 8a shows the execution speci�cation where tc
is partitioned by the �rst key. The number of SHUFFs in
the plan is 2K , as there are two SHUFFs in each recursive
rule evaluation. In comparison, the other partitioning of tc
shown in Figure 8b requires fewer SHUFFs, i.e., K + 1; there
is a single SHUFF for the non-recursive rule as well as one
for each recursion. Our evaluation later shows that the latter
plan provides a greater than 2⇥ improvement.

5 GLOBAL OPERATOR OPTIMIZATIONS
Translation from the Global Operators described above de-
pends on both context and the structure of the datacenter
network. Re�ning these operators is important as they can
incur signi�cant performance costs in a large-scale datacen-
ter deployment. We note that translation of the execution
speci�cation’s classic logical operators into equivalent physi-
cal operators follows standard database plan generation, and
we omit those details for brevity.

GraphRex introduces an array of synergistic optimiza-
tions (see Table 1), some of which can be used in combina-
tion, and some of which are intended as complements. Their
bene�ts stem from a variety of reasons, but the overarch-
ing principle is to reduce data and data transfer, particularly
across “expensive” links in the datacenter. Our results show
that these techniques result in orders of magnitude better
performance in typical datacenter environments.

5.1 Columnization and Compression
One important optimization in GraphRex applies to SHUFF.
In SHUFF, tuples to be shu�ed are stored in message bu�ers,

Optimization Description Section

SHUFF

Columnization & Compression Leverages workload characteristics to reduce the amount of data sent across the
network on every SHUFF.

5.1

Hierarchical Network Transfer Further reduces the amount of data sent over ‘expensive’ links by applying colum-
nization and compression hierarchically.

5.2

JOIN/
ROUT

Join Deduplication To enforce distributed set semantics in JOINs, when a JOIN feeds into a SHUFF,
we push deduplication into the SHUFF evaluation in a datacenter-centric manner.

5.3

Adaptive Join Ordering To account for power-law degree counts, we sometimes allow ROUT to dynami-
cally chose a tuple-level join ordering. Only used when duplicates are uncommon.

5.4

AGG
Hierarchical Global Aggregation Applies our datacenter-centric approach to global aggregation. 5.5
On-path Aggregation When SHUFF comes before a local AGG, we push the AGG down into the SHUFF

to pre-aggregate values, again in a datacenter-centric fashion.
5.6

Table 1: GraphRex’s Global Operator optimizations, when they apply, and where they are described.

which are then exchanged between workers. Rather than
directly shu�ing those bu�ers between workers, Graph-
Rex (1) �rst sorts the data, (2) reorganizes (transposes) the
tuples into a column-based structure, and (3) compresses the
resulting data using the two techniques described below.

Although columnar databases are well-studied [5–7], their
primary bene�t in the literature has been in storage require-
ments. Performance bene�ts, on the other hand, are tradition-
ally dependent on access patterns [32, 44].GraphRex instead
sends columnar data by default due to its bene�ts to two
techniques—column unrolling and byte-level compression—
that are particularly e�ective on typical graph workloads.

The �rst technique, column unrolling, is a process where
we elide columns of known low cardinality, C , by creating
C distinct columnar data stores—one for each unique value.
For instance, in an adaptively ordered multi-way join, as
described in Section 5.4, each intermediate tuple must carry
with it an ID that denotes the join order and its place in
that ordering of binary joins. In this and many other queries,
column unrolling can all but remove the storage requirement
of those columns.

The second technique, byte-level compression, compresses
sorted and serialized streams using the Lempel-Ziv-class LZ4
lossless and streaming compression algorithm [4]. This pro-
cess is shown in Figure 9. Both sorting and columnization
signi�cantly increase the similarity of adjacent data in typical
graph applications, resulting in higher compression ratios.
More optimal algorithms exist, but LZ4 is among the fastest
in terms of both compression and decompression speed. To
further reduce the overhead of this optimization, we only
sort over the partition key (V in the example of Figure 9). We
also limit compression to large messages, directly sending
messages that are under certain size. As typical message sizes
are bimodal, any reasonable threshold will provide a simi-
larly e�ective reduction of overhead (in our infrastructure, a
threshold of 128 bytes was robust).

������,
������,
������,
������, ��������, ��������, ��������,

����� 	2���1���

	2�34���

��������,���������,���������,

�����������������������������

������,
������,
������,
������,

�����
24�

Figure 9: Column-based organization for r(V,A,B),
where V is the partition key. Shaded is compressed.

Once the shu�e operation is �nished, each worker de-
compresses, deserializes and transposes the received data
to access the tuples. We store the tuples in row form for
access and cache e�ciency. We also heavily optimize mem-
ory copies, bu�er reuse, and other aspects of serialization
and deserialization, but omit the details for space. Applying
columnization and compression together at a worker level
brings ⇠2⇥ overall message reduction for the CC query, how-
ever, its e�ectiveness in typical datacenters can be magni�ed
by the next optimization we propose to SHUFF operator.

5.2 Hierarchical Network Transfer
GraphRex extends the bene�ts of the previous section by
executing Hierarchical Network Transfers as part of SHUFF.
This optimization reduces transfers over network, particu-
larly the oversubscribed portions described in Section 2.2.

Figure 10 depicts this process for a rack with two servers
and two workers per server. Speci�cally, transfers occur in
three steps: server-level shu�ing, rack-level shu�ing and the
�nal global shu�ing. At each level, workers communicate
with other workers in the same group, and split their tuples
so that each partition key is assigned to a single worker in
the group. At each step, tuples are e�ciently decompressed,
merge sorted, and re-compressed. The bene�t of performing
this iterative shu�ing and compression is that, with every
stage, the working sets of workers become increasingly ho-
mogenous and therefore more easily compressed.

To show the e�ect of this optimization, we present results
for Query 1 (CC) on a billion-edge Twitter dataset running in

Server

1 2 3 4 1 2 3 4
w1 w2

1 2 3 4 1 2 3 4
w3 w4

1 1 4 42 23 3 1 1 2 23 3

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

4 4

Server
Rack

Figure 10: An example hierarchical transfer. Each
worker groups its tuples by partition key, and sends
the them �rst within a server, then within a rack, and
�nally to their destinations. A naïve system would
send directly to other racks. Colors track where the
tuple was generated; numbers indicate the partition.

a 40-server, 1:5 oversubscription testbed (more results are in
Section 6). Table 2 shows the communication/total speedup
of two schemes: simple compression (directly on tuples) and
SHUFF (column-based hierarchical compression).

They are compared against a baseline that does not imple-
ment compression or infrastructure-aware network transfer.
Columnization combined with hierarchical network transfer
creates more total tra�c, but with less going over oversub-
scribed links and better load balancing (see Section E for
an explanation). In this case, server-level shu�ing reduces
the data by 4.6⇥, and rack-level shu�ing reduces the data
by 6.2⇥ in our datacenter testbed running 20 workers per
server. Together with our optimizations on memory manage-
ment and (de)serialization, SHUFF achieves a 9.8⇥ speedup
in communication time and 7.2⇥ in total execution time.

Comm Total

Only compression 1.02⇥ 1.02⇥
SHUFF 9.84⇥ 7.2⇥

Table 2: Communication and total speedup of SHUFF
and row-based compression in CC on Twi�er.

5.3 Join Deduplication
JOINs are among the most expensive operations in large
graph applications. One reason for this is the prevalence
of high amounts of duplicate data in real-world distributed
graph joins. For example, with Query 5 (TC) on a social
graph, users may have many common friends and thus many
potential paths to any other user.
In order to provide set-semantics for joins, previous sys-

tems perform a global deduplication on the generated tu-
ples [54]. GraphRex instead introduces Hierarchical Dedu-
plication, which takes advantage of datacenter-speci�c com-
munication structures to decrease the cost of deduplication
when it observes JOIN followed by a SHUFF. Note that when

Worker Worker Level Server Level Rack Level
W 1 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (1,2)
W 2 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (2,3)
W 3 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (3,4)
W 4 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (4,5)

Table 3: An example of Hierarchical Deduplication
with a single rack of two servers, with two workers
per server. At each successive layer of the hierarchy,
workers coordinate to deduplicate join results before
incurring increasingly expensive communication.
the results of a JOIN are used directly (without an intermedi-
ate SHUFF), local deduplication is su�cient.
To illustrate the process of Hierarchical Deduplication,

consider again the deployment environment of Figure 10,
where we have four workers in a single rack. Assume also
that all four workers generate the same tuples {(1,2), (2,3),
(3,4), (4,5)}, where the �rst attribute in the relation is the
partition key. After the tuples are generated, workers insert
them into a hash set that stores all tuples they have seen thus
far. This results in the local state shown in the second column
of Table 3. Workers on the same server then shu�e tuples
among themselves, never traversing the network. The same
is done at a rack level: servers deduplicate tuples without ever
sending across the oversubscribed interconnect. In the end, of
the 16 tuples generated in the rack, only 4 are sent to the other
rack—a factor of 4 decrease in inter-rack communication.
Queries on real-world graphs, e.g., social networks and web
graphs, often exhibit even greater duplication because of
dense connectivity: in the execution of TC over Twitter, for
instance, 98.5% of generated tc tuples are duplicates.

Dup % Comm Total

Baseline 98.5% 39.9 s 41.1 s
Hierarchical Dedup 42.7% 2.7 s (14.8⇥) 4.3 s (9.6⇥)

Table 4: Hierarchical Deduplication in TC on Twi�er.
Dup % indicates duplicate tuples received at workers

Table 4 presents the Twitter/TC result on the testbed used
in the preceding section. We can see that, for workloads with
many duplicates, hierarchical deduplication can e�ciently
remove most of them. In comparison, push-down techniques
at worker level and server level can only reduce the duplica-
tion ratio to 96.3% and 90.7% respectively, which shows that
deduplication should be performed at greater scale. The high
deduplication rate of JOIN results in a 14.8⇥ communication
speedup and 9.6⇥ total speedup. Even for workloads with
few duplicates, the overhead of this optimization is low.

5.4 Adaptive Join Ordering
In the case of multi-way joins,GraphRex sometimes chooses
a more aggressive optimization: Adaptive Join Ordering. To

0

1

2

3

Generation
root

a b

Figure 11: Query 4 (SG) on an example graph.

that end, the ROUT operator decides, per-tuple, of how to
order the constituent binary joins of a multi-way join. A
key challenge here is predicting the performance e�ects of
choosing one order over another. One reason this can be
di�cult is due to duplicates; di�erent join orders may result
in tuples being generated on di�erent workers, impacting
the occurrence of duplicates in unpredictable ways for the
current and future iterations.

For that reason, Adaptive Join Ordering is a complement
to Join Deduplication: when the number of duplicates is
high, the latter is e�ective, otherwise the optimization de-
scribed here is a better choice. We rely on programmers to
di�erentiate between the two when con�guring the query.
In practice, this is typically straightforward (and akin to the
con�guration of combiners in Hadoop/Spark), but pro�ling
and sampling could automate the process in future work.
To illustrate a simple example of how join ordering can

result in improved performance, consider the evaluation of
Query 4 (SG) over the graph in Figure 11. Starting at the
root, vertices a and b are in the same generation, so a tuple
(a,b) in sg is generated by the �rst rule. The evaluation of
the second rule is decided by how sg is partitioned:

• If the relation is partitioned by the �rst attribute, then
the join is evaluated from left to right ((e Z sg) Z e)
where (a,b) is sent to a to join with �a (the adjacency
list of a) before the intermediate tuples are shu�ed to
b to �nish the join.

• If partitioned by the second key, then the join ordering
is from right to left (e Z (sg Z e)) where �b is sent to a
to �nish the join, less cost than the �rst order.

For this iteration, the left-to-right ordering used by exist-
ing distributed Datalog systems results in a factor of three
increase in intermediate tuples compared to right-to-left.
The opposite is true for the third generation. Real-world
graphs produce many such structural discrepancies due to
their power-law distributions of vertex degree. This distri-
bution can result in substantial performance discrepancies
between di�erent join orderings, even within a single rela-
tion. Thus, static ordering—any static ordering—can result
in poor performance.
Optimization target. The goal of ROUT is as follows. LetT
be the bag of tuples generated by GR-DSN query evaluation.
T consists of tuples generated in every iteration, so we have

T =
ÕK

k=0Tk where Tk is the bag of tuples generated in
iteration k and K is the iteration where a �xpoint is reached.
ROUT’s optimization objective is:

min |T | = min
K’
k=0

|Tk |

Intuitively, more tuples mean increased cost of tuple gen-
eration and shu�ing. More formally, let T �

k be the bag of
intermediate tuples—those that are generated in the inter-
mediate binary joins in order to complete the multi-way
join—andT �

k be the bag of output tuples of the head relation
(for example, sg in SG), so Tk = T �

k +T
�
k , and we have:

min |T | = min
K’
k=0

(|T �
k | + |T �

k |)

As mentioned previously, GraphRex makes an assump-
tion that there are no duplicates in generated tuples. Formally,
this simpli�es optimization in two ways. First, if there are
no duplicates, any ordering generates the same T �

k (because
of the commutativity and associativity of natural joins) so
|T �
k | becomes a constant. Second, the ordering of one itera-

tion does not a�ect another. This independence allows us to
optimize each iteration without worrying about later ones.
With this assumption, we now have

min |T | =
K’
k=0

min(|T �
k |) +C (1)

where C is a constant representing the number of output
tuples generated in the evaluation.
Ordering joins. With the above, GraphRex picks a tuple-
level optimal ordering using a precomputed index.
For every newly generated tuple that goes through the

ROUT operator, GraphRex enumerates all possible left-deep
join orders, computes the cost (i.e., the number of tuples
in T

�
k that the order generates) for each order, and selects

the order with the minimum cost. Then, GraphRex sets the
partition key of this tuple based on the join order, and sends
it to the destination for join evaluation. For example, in SG,
for every new sg tuple (a,b), there are two possible join
orders: ((e Z sg) Z e) and (e Z (sg Z e)). The cost for the
�rst order is the degree of a because (a,b) is sent to a �rst for
the �rst binary join and then �a is sent to b for the second
binary join. Similarly, the cost for the second order is the
degree of b. The degrees of all vertices are precomputed as
an index, and thus e�ciently accessible at runtime.
Generality. For n-way joins, the possible options grow to�n�1
i�1

�
, where i is the position of the recursive predicate, e.g.,

e Z sg Z e is a 3-way join with sg in position 2. Note that

the recursive predicate in position 0 or n leads to only 1 or-
dering. GraphRex scales e�ciently by preloading necessary
information as indexes whose total size grows as O(n |V |).
Regardless, typical values of n are small and there are only a
small number of possible orders. See Appendix C for details.

1st 2nd 3rd 4th

% of LR 77.47% 80.64% 87.65% 88.16%
% of RL 22.53% 19.36% 12.35% 11.84%

Table 5: The percentage of tuples using each join order
during the �rst four iterations of SG on SynTw. LR is
(e Z sg) Z e and RL is e Z (sg Z e).
Table 5 shows the percentages of tuples in the optimal

query plan of the �rst four iterations of SG on SynTw, a
synthetic graph of Twitter follower behavior (see Section 6
for more information). For most tuples, LR ordering is opti-
mal, but for a non-negligible fraction, it is not. Because of
this variability, Table 6 shows that, compared to static order-
ing, Adaptive Join Ordering brings 2.7⇥ and 2⇥ speedup to
communication and execution time respectively.

Comm Total

Static ordering 3.4 s 9.3 s
Adaptive Join Ordering 1.3 s (2.7⇥) 4.6 s (2⇥)

Table 6: Comparison of adaptive and static ordering.

5.5 Hierarchical Global Aggregation
As mentioned in Section 4.2, there are three types of aggre-
gations, two of which are translated to Global Operators.
This section describes our optimizations for the global AGG,
which is used to compute and disseminate a single global
value to all workers via the coordinator. A naïve implementa-
tion would create a signi�cant bottleneck at the coordinator.
A classic alternative is parallel aggregation, in which workers
aggregate among themselves in small groups, then aggregate
the sub-aggregates, and so on. GraphRex improves this by
leveraging knowledge of datacenter network hierarchies.
Figure 12 shows an example of this process. First, each

worker applies the aggregate function on its vertices and
computes a partial aggregated value, then it sends its partial
value to a designated aggregation master in the server. When
the server master receives partial values from all workers
in the same server, it again applies the aggregate function
to update its partial value and then it sends the value to the
rack master, which updates its own partial value and �nally
sends that value to the global aggregation coordinator.
As in previous instances, hierarchical transmission sig-

ni�cantly reduces tra�c over the oversubscribed network.
As the computations and communications of Hierarchical

Worker

Server

Rack Switch

1 1

2

Figure 12: Hierarchical Global Aggregation in a rack.
After worker-level aggregation, intermediate aggre-
gates are shu�led (1) at a server-level, and (2) at a rack-
level before �nishing global aggregation.

Global Aggregation are distributed at each network hierar-
chy, the overhead to the aggregation coordinator is also re-
duced. Table 7 shows the performance of Hierarchical Global
Aggregation in the query of counting vertex number (NV)
on Twitter. The baseline is infrastructure-agnostic, which
means the global aggregation is implemented in an AllRe-
duce manner where all workers send their partial aggregated
values to the coordinator. Hierarchical Global Aggregation
results in 41⇥ speedup in communication and reduces query
processing latency from 2.26 s to 0.16 s.

Comm Total

Baseline 2.154 s 2.26 s
Hier. Glob. Agg. 0.052 s (41.4⇥) 0.158 s (14.3⇥)

Table 7: Evaluation of Query 2 (NV) on Twi�er.

5.6 On-path Aggregation
Finally, the other AGG operator computes a value for each
vertex, but requires a SHUFF �rst. In this case, GraphRex
pushes AGG down into SHUFF so that every worker only
sends aggregated tuples. The key insight is that tuples that
are shu�ed to the same vertex can be pre-aggregated. On-
path Aggregation again leverages hierarchical shu�ing: at
each level in the network, it consolidates the tuples for the
same vertices to e�ciently and incrementally apply aggre-
gation and reduce the number of shu�ed tuples.
Table 8 shows the performance of On-path Aggregation

in CC on Twitter, where the baseline is aggregation at the
destination, which means that all tuples are shu�ed through
the network �rst, and then aggregated using (min). On-path
Aggregation brings 10⇥ speedup in the communication, and
the end-to-end query processing latency is reduced by 7.8⇥.

Comm Total

Baseline 119.8 s 124.29 s
On-path Aggregation 11.997 s (10⇥) 15.97 s (7.8⇥)

Table 8: Evaluation of Query 1 (CC) on Twi�er.

6 EVALUATION
In this section, we evaluate the performance of GraphRex
with a representative set of real-world graph datasets and
queries in order to answer three high-level questions:

• How competitive is the performance of GraphRex? We
compareGraphRexwith BigDatalog [3], which is shown
to outperform other distributed declarative graph pro-
cessing systems (such as Myria [59] and SociaLite [53]),
Giraph [1], and PowerGraph [28], two highly-optimized
distributed graph processing systems.

• How robust is GraphRex to datacenter network dynam-
ics?We emulate typical network events that a�ect the
connectivity between servers, vary network capacity, in-
ject background tra�c following typical tra�c patterns
in datacenters, and test systems under such dynamics.

• How scalable is GraphRex?We evaluate how GraphRex
scales with additional datacenter resources for large-
scale graph processing.

Due to space constraints, we have includedmore experiments
in the Appendix, including more results (App. F) and the
analysis of communication patterns in GraphRex (App. E).

6.1 Methodology
Setup. Our CloudLab datacenter testbed consists of two
racks and 20 servers per-rack. Each server has two 10-core
Intel E5-2660 2.60GHz CPUs, 160GB of DDR4 memory, and a
10Gb/s NIC. In aggregate, the testbed has 6.4 TBmemory and
1.6 K CPU threads. Mirroring modern datacenter designs [14,
30, 56], our testbed is connected using a 10Gb/s leaf-spine
network [10] with four spine switches by default, resulting
in an oversubscription ratio of 1:5.
Queries. We have selected a set of representative queries
to evaluate GraphRex. General Graph Queries include Con-
nected Components (CC, Q1), PageRank (PR, Q3), Single
Source Transitive Closure (TC, Q5), Single Source Short-
est Path (SSSP, Q6), and Reachability (REACH, Q7). Among
those queries, CC and PR are compute-intensive and TC,
SSSP and REACH are more communication-intensive. We
also evaluated local and global Aggregation queries (CM, Q8)
(sum and min aggregators produced similar results) as well
as Multi-way Join queries like Same Generation (SG, Q4).

Query 6: SSSP (SSSP)
sssp($ID ,0) :- e($ID ,_,_)
sssp(A,min <C1+C2 >) :- sssp(B,C1), e(B,A,C2)

Query 7: Reachability (REACH)
reach($ID) :- e($ID ,_)
reach(A) :- reach(B), e(B,A)

Query 8: CountMax (CM)
inout(A,count) :- e(A,$ID), e($ID ,B)
maxcount(max <CNT >) :- inout(_,CNT)

Datasets. As shown in Table 9, we have selected four real-
world graph datasets, all of which contain billions of edges.
Twitter and Friendster are social network graphs, and UK2007
and ClueWeb are web graphs.

Graph # Vertices # Edges Data Size
Twitter (TW) 52.6M 2B 12GB
Friendster (FR) 65.6M 3.6 B 31GB
UK2007 (UK) 105.9M 3.7 B 33GB
ClueWeb (CW) 978.4M 42.6 B 406GB

Table 9: Large graphs in the evaluation.

System con�gurations.We compare against the latest ver-
sions of in-comparison systems, and con�gured them to
achieve the best performance in our datacenter. We provi-
sioned themwith su�cient cores and memory and optimized
other parameters, such as the number of shu�e partitions
in BigDatalog, the number of containers in Giraph, and par-
tition strategies in PowerGraph. When possible, we used the
query implementations provided by these systems, and im-
plemented the remainder from scratch. Not all systems were
able to support all queries easily/e�ciently; we omit those
as needed. BigDatalog, for instance, has di�culty supporting
PageRank because it cannot limit the number of iterations.
The original paper [54] also omits PR. Similarly, PowerGraph
cannot easily support SG, because a) vertex adjacency lists
are not readily accessible, and b) it forces message consoli-
dation, which would be very ine�cient for SG.

6.2 System Performance
We �rst evaluate the performance of GraphRex against state-
of-the-art systems in terms of query processing times.
General graph queries. Table 10 compares the overall per-
formance of GraphRex, BigDatalog, PowerGraph, and Gi-
raph across di�erent graphs and queries. CC and PR require
more computation than other queries. Even in these cases,
the oversubscribed network is enough of a bottleneck that
GraphRex outperforms other systems by up to an order of
magnitude. Against BigDatalog and CC, this order of mag-
nitude improvement is consistent. PowerGraph and Giraph,
due to their specialization to graph processing, perform bet-
ter than BigDatalog, but they are still signi�cantly slower
than GraphRex, if they complete (between 3.2⇥ and 17.3⇥).
We note that the largest graph, CW, caused out-of-memory
issues on both BigDatalog and Giraph; our deduplication and
compression alleviate some issues with working set size.

On more communication-intensive queries, i.e., TC, SSSP
and REACH, GraphRex achieves even greater speedups. On
on these too, BigDatalog failed to complete on the largest
graph, CW. For TC, GraphRex outperforms BigDatalog and
Giraph by up to two orders of magnitude, and PowerGraph

CC PR TC REACH

G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G.

TW Time 10.3s 119.8s 49.1s 35.6s 13.4s - 68.6s 43.2s 3.1s 336.8s 50.8s 11.8s 2.8s 90s 26.7s 11.5s
SpdUp 11.6⇥ 4.7⇥ 3.4⇥ N/A 5.1⇥ 3.2⇥ 109.4⇥ 16.5⇥ 3.8⇥ 32⇥ 9.5⇥ 4.1⇥

FR Time 15.3s 278.6s 79.3s 60.5s 18.5s - 148.7s 60s 5.1s 898.5s 81.8s 20.4s 5.2s 236.1s 49.01s 20.7s
SpdUp 18.2⇥ 5.2⇥ 4.0⇥ N/A 8.1⇥ 3.2⇥ 176⇥ 16⇥ 4⇥ 45.6⇥ 9.5⇥ 3.99⇥

UK Time 30.9s 452.8s 274.4s 164.6s 9.6s - 149.9s 73.6s 18.5s 866.3s 192.1s 86.1s 17.6s 361.02s 152.6s 87.1s
SpdUp 14.7⇥ 8.9⇥ 5.3⇥ N/A 15.6⇥ 7.7⇥ 46.9⇥ 10.4⇥ 4.7⇥ 20.5⇥ 8.7⇥ 4.9⇥

CW Time 472.6s OOM 8159.5s 1808s 188.7s - OOM 668.8s 207.4s OOM 5395.2s 978.7s 187.1s OOM 4909.7s 969.2s
SpdUp N/A 17.3⇥ 3.8⇥ N/A N/A 3.5⇥ N/A 26⇥ 4.7⇥ N/A 26.2⇥ 5.2⇥

Table 10: Execution time and speedup forGraphRex (G.R.) compared to BigDatalog (B.D.), Giraph and PowerGraph
(P.G.). We present results for four queries (CC, PR, TC, and REACH) (Figure 1 shows results for SSSP), and four
graph datasets (TW, FR, UK, CW). OOM indicates an out-of-memory error. Note that B.D. does not support PR.

 0.1

 1

 10

 100

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

3.54

9.91

2.17

0.33

(a) Twi�er

 0.1

 1

 10

 100

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

3.7

18.6

2.81

0.36

(b) Friendster

Figure 13: Aggregation query evaluation with CM.

by more than 4⇥ on average. Some of this stems from Graph-
Rex’s automatic relation partitioning (Section 4.2.4). BigDat-
alog, by default, partitions by the �rst key, which happens to
be a poor choice in this case. Manually partitioning by the
second key leads to 2⇥ better performance, but this is still
much slower than GraphRex as it lacks our other optimiza-
tions. For SSSP (results in Figure 1), GraphRex outperforms
BigDatalog by 28–54⇥ on the workloads BigDatalog could
complete, and outforms PowerGraph and Giraph by an aver-
age of more than 5⇥ and 10⇥. Finally, for REACH, GraphRex
achieves up to 45.6⇥ higher performance than BigDatalog
and up to 26.2⇥ speedup over PowerGraph and Giraph.
Aggregation queries. Figure 13 shows the results of an ag-
gregation, Query 8 (CM), on TW and FR. Since we have found
similar results on UK, and BigDatalog cannot handle CW, we
have omitted these results. Here, BigDatalog performs better
than Giraph, achieving 2.8⇥ and 5⇥ better performance on
TW and FR, respectively, similar to PowerGraph. GraphRex
is almost an order of magnitude faster than all of them as a re-
sult of our AGG Global Operator optimizations (Sections 5.5
and 5.6) and their ability to avoid traversal of the oversub-
scribed network. GraphRex �nishes within one second.

 0.1

 1

 10

 100

 1000

BiasedTree SynTw Citation

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

GraphRex
378.48

34.62

291.64

87.25

25.16

120.86

0.55

4.6

36.18

Figure 14: Multi-way join query evaluation with SG.

Multi-way join queries. Multi-way joins are challenging
even on small social network andweb graphs. Consider SG as
an example: since such graphs arewell-connected, all vertices
will eventually be at the same generation. This would result
in an output size of |V |2, where |V | is the number of vertices;
so a small graph with 1M vertices would result in 1 T sg
tuples. Therefore, we have used three alternative datasets to
evaluate SG: (1) BiasedTree, which ampli�es the imbalance
in Figure 11 by setting the degree of the high-degree vertices
to 10K and increasing the depth of the tree to 10, (2) SynTw,
a synthesized graph simulating follower behavior in Twitter
but without cycles, and (3) Citation, which is a real-world
graph of paper citation relationships that we collected from
public sources. While numbers of edges are relatively small
(0.1M, 35.7M, and 20.4M, respectively), the generated tuple
sets are large: 1 B, 70M, 6 B tuples during the evaluation of
SG when using the best static join order.
Figure 14 shows our results (PowerGraph is omitted as

noted earlier). For fairness, we ensured that Giraph and Big-
Datalog used the best static join order for the query. Even
so, GraphRex signi�cantly outperforms both. Adaptive Join
Ordering, by picking the most e�cient join ordering for ev-
ery tuple, reduces the number of generated tuples to 0.2M,
17M, and 3 B. The resulting performance improvement is

 0

 100

 200

 300

 400

 500

 600

10 50 100

Ex
ec

ut
io

n
tim

e
(s

)

Link degradation

BigDatalog
Giraph

PowerGraph
GR-Baseline

GraphRex

Figure 15: System per-
formance under varying
link degradations.

 0

 50

 100

 150

 200

4 3 2 1
Ex

ec
ut

io
n

tim
e

(s
)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GR-Baseline

GraphRex

Figure 16: System perfor-
mance with varying #ag-
gregation switches.

3.3⇥ in the worst case, with an upper bound of 2–3 orders of
magnitude in the extreme case (BiasedTree).
Summary: This set of experiments shows that, as a declar-
ative system, GraphRex consistently and signi�cantly out-
performs existing systems—both declarative and low-level—
particularly on large-scale graph workloads.

6.3 Robustness to Network Dynamics
We next evaluate the robustness of GraphRex to network
dynamics, which are common in datacenter networks.
Network degradation. One such class is link degradations,
where the link capabilities can experience a sudden drop
due to gray failures, faulty connections, or hardware is-
sues [27, 63]. To emulate this, we randomly select a single
rack switch uplink and throttle its capacity to 1⁄10, 1⁄50 and 1⁄100
of its original capacity. Note that a degradation of a sin-
gle server’s access link would decrease performance for all
systems equally. We deploy �ve systems and test their per-
formance with CC on Twitter (results are similar for other
graphs and queries): GraphRex, BigDatalog, Giraph, Pow-
erGraph, and ‘GR-Baseline’, a version of GraphRex with
Global Operator optimizations disabled.
Figure 15 shows performance under di�erent degrees of

link degradation. Because GraphRex minimizes tra�c sent
through bottleneck links, it is by far the most robust to degra-
dations of those links. In fact, a 1⁄10 degradation shows almost
no e�ect at all (10.61 s vs 10.3 s); even in the 1⁄100 case, Graph-
Rex �nishes in 17.24 s. In comparison, GraphRex-baseline
experiences signi�cant delay, taking 140 s in the 1⁄10 case, and
433 s in the 1⁄100 case. Among all systems, PowerGraph is most
sensitive to network dynamics (16⇥ slower than normal for
the 1⁄100 case. Other systems are also severely impacted.
Oversubscription variation. We next evaluate the e�ect
of over-subscription. We emulate this by adding/removing
spine switches from the testbed. Less spine switches means
less inter-rack capacity and greater over-subscription. Due to
hardware constraints, we only vary the number of switches
in the spine layer from 4 to 1.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Pe
rc

en
ta

ge
 (

%
)

Running Time (s)

GraphRex PowerGraph Giraph BigDatalog GR-Baseline

Figure 17: TheCDF of performancewith randomback-
ground tra�c. Each dot represents a complete run.

Figure 16 shows results for CC on TW. Results for other
graphs are included in Appendix F.1. The over-subscription
signi�cantly degrades the performance of other systems:
PowerGraph performance drops 52% (36 s to 54 s) between 4
and 1 spine switches, BigDatalog drops 31% (120 s to 157 s),
Giraph 20% (49 s to 59 s), and GR-Baseline 23% (124 s to 152 s).
For reasons similar to the prior section, GraphRex’s perfor-
mance only changes 7% (10.3s to 11.1s) over the same range.
Background tra�c. Finally, since datacenters typically host
multiple applications, applications often experience unpre-
dictable “noise” in the network in the form of background
tra�c. To evaluate GraphRex and the other systems in its
presence, we inject background tra�c using a commonly
used datacenter tra�c pattern [12, 13, 36]. Following the
existing methodology, we generate tra�c �ows from ran-
dom sender/receiver pairs, with �ow sizes and �ow arrival
times governed by the real-world datacenter workloads [13].
Overall, we generated �ve representative tra�c traces, each
with an average network utilization of 40%. Details of the
generated traces are included in Appendix D. We ran CC
on TW in each system with background tra�c, and note
that other query workloads have similar �ndings. As Fig-
ure 17 shows, the performance variation is signi�cant for
other systems, with standard deviations (�) of 3.6 (P.G.), 4.3
(Giraph), 3.9 (B.D.) and 4.2 (GR-Baseline). GraphRex, on the
other hand, achieves � = 0.96, which is much more robust,
and its performance is signi�cantly better than other sys-
tems, with average speedups of 4.6⇥ (over P.G.), 5.2⇥ (over
Giraph), 10.1⇥ (over B.D.), and 10.6⇥ (over the baseline).
Summary: The datacenter-centric design in GraphRex in-
creases robustness to network dynamics, even in harsh net-
work conditions with signi�cant link degradation, over-sub-
scription, and random background noise.

6.4 Scalability Analysis
Finally, we evaluate scalability compared to other systems.
We examine how adding servers to the job a�ects perfor-
mance. Speci�cally, we vary the number of servers per rack

 0

 50

 100

 150

 200

10 12 14 16 18 20

150.7s

89.7s

44.8s

20.97s

119.8s

49.1s
35.6s

10.3s

Ex
ec

ut
io

n
tim

e
(s

)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 18: Scalability with the number of servers.
G.R. B.D. Giraph P.G.

Running Time 19.95s 142.31s 86.09s 42.33s
Two-rack Speedup 1.93⇥ 1.18⇥ 1.76⇥ 1.2⇥

Table 11: The performance in single rack.

in our two-rack testbed from 10 to 20 with a step of 2. Fig-
ure 18 shows the result of running CC on TW. For all sys-
tems, the running times decrease when more servers are
added. However, more servers per rack also leads to higher
oversubscription, which poses scalability bottlenecks. As
a result, BigDatalog and PowerGraph only achieve around
1.3⇥ speedup when we double the number of servers; Giraph
achieves a 1.8⇥ speedup, yet it still has lower performance
than PowerGraph. In contrast, GraphRex, in our represen-
tative datacenter con�guration, scales almost linearly: 2⇥
speedup when server count doubles.

We saw a similar result when scaling up the number of 20-
machine racks from one to two, as shown in Table 11. Here
too, doubling the number of racks almost doubled Graph-
Rex performance. Giraph also scaled well achieving 1.76⇥
speedup, but the other systems did not. Appendix F.2 includes
results for other workloads.
We also did COST [47] and scale-up/out analysis. Due to

space constraints, we included the results in our technical
report [61]. Appendix F.3 contains performance evaluation
with Timely Data�ow [46], a distributed data�ow system
optimized for both high throughput and low latency.

7 RELATEDWORK
Many graph processing systems have been proposed, includ-
ing Pregel [45], Giraph [20], GraphX [29], PowerGraph [28],
GPS [52], Pregelix [19], GraphChi [37], and Chaos [50].Graph-
Rex adopts a Datalog-like interface and computation model
in order to explore the space of optimizations for large graph
queries running on modern datacenter infrastructure.
Declarative data analytics: SociaLite [38] and Emptyh-
eaded [8] are Datalog systems optimized for a single-machine
setting. Hive [2] and SparkSQL [15] are distributed, but only
accept SQL queries without recursion. BigDatalog [54] and

Datalography [48] explore an intermediate design point (Dat-
alog compiled to SparkSQL and GiraphUC); however, they
ignore infrastructure-level optimizations and can be worse
than the systems they are built on. GraphRex instead lever-
ages Datalog for graph-speci�c and datacenter-centric opti-
mizations, and outperforms existing systems signi�cantly.
Performance optimizations. Several existing proposals [9,
21, 24, 31, 33] have explored the network-level optimization
of groups of related network tra�c �ows, e.g., in a shu�e
operation. GraphRex is distinguished by its deep level of
integration with the Datalog execution model and its opti-
mizations for graph workloads.
Graph compression and deduplication. Recent work has
used data compression on graphs. Blandford et al. [17, 18]
propose techniques to compactly represent graphs. Ligra+ [55]
further parallelizes these techniques. GBASE [35] and SLASH-
BURN [40] perform compression for MapReduce to reduce
storage. GraphRex is mostly related to C-Store [5], a column-
oriented database, and we have further proposed novel tech-
niques like the compressed transpose data structure.

Priorwork has also explored deduplication, e.g., viaMapRe-
duce combiners [25, 60] and mechanisms for distributed set
semantics [22, 54]. Our system pursues the same goals, but
our key contribution is to adapt these techniques to create
datacenter-centric optimizations for relational operators.

8 CONCLUSION
GraphRex is a framework that supports declarative graph
queries by translating them to low-level datacenter-centric
implementations. At its core, GraphRex identi�es a set of
global operators (SHUFF, JOIN/ROUT, and AGG) that ac-
count for a signi�cant portion of typical graph queries, and
then heavily optimizes them based on the underlying dat-
acenter, using techniques such as hierarchical deduplica-
tion, aggregation, data compression, and dynamic join or-
ders. With a comprehensive evaluation, we demonstrate that
GraphRex works e�ciently over large graphs and outper-
forms state-of-the-art systems by orders of magnitude. Gen-
eralizing our techniques to not rely on graph-speci�c proper-
ties (e.g., the ability to preload join cardinalities for Adaptive
Join Ordering) is left to future work.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful
comments and suggestions. We appreciate the signi�cant
development e�orts from Jiacheng Wu and Yucheng Lu, and
the valuable comments from James Cheng, Susan David-
son, Chen Chen, Yang Li and Mohan Yang. This work was
funded in part by NSF CNS-1801884, CNS-1513679, CNS-
1703936 and NSF CCF-1763514, and DARPA contracts No.
HR001117C0047 and No. HR0011-16-C-0056.

REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.
[2] Apache Hive. https://hive.apache.org/.
[3] BigDatalog. https://github.com/ashkapsky/BigDatalog.
[4] Lz4 - extremely fast compression. http://lz4.github.io/lz4/.
[5] D. J. Abadi, S. R. Madden, and M. C. Ferreira. Integrating compression

and execution in column-oriented database systems. In SIGMOD, 2006.
[6] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-

stores: How di�erent are they really? In Proc. SIGMOD, 2008.
[7] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization

strategies in a column-oriented DBMS. In Proc. ICDE, 2007.
[8] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. EmptyHeaded: A relational

engine for graph processing. In SIGMOD ’16.
[9] F. Ahmad and et al. Shu�eWatcher: Shu�e-aware scheduling in

multi-tenant mapreduce clusters. In USENIX ATC ’14, 2014.
[10] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. SIGCOMM ’08. ACM, 2008.
[11] O. Alipourfard and et al. Cherrypick: Adaptively unearthing the best

cloud con�gurations for big data analytics. NSDI’17, 2017.
[12] M. Alizadeh, T. Edsall, and et al. CONGA: Distributed congestion-

aware load balancing for datacenters. In Proc. SIGCOMM, 2014.
[13] M. Alizadeh and et al. Data center TCP (DCTCP). In SIGCOMM, 2010.
[14] A. Andreyev. Introducing data center fabric, the next-generation

facebook data center network. https://goo.gl/rE8wkL, 2014. Facebook.
[15] M. Armbrust and et al. Spark SQL: relational data processing in spark.

In SIGMOD ’15, 2015.
[16] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. 2000.
[17] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations

of separable graphs. In Proc. SODA, 2003.
[18] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental analysis

of a compact graph representation. In Proc. ALENEX, 2004.
[19] Y. Bu and et al. Pregelix: Big(ger) graph analytics on a data�ow engine.

PVLDB, 2014.
[20] A. Ching and et al. One trillion edges: Graph processing at facebook-

scale. PVLDB, 2015.
[21] M. Chowdhury and et al. Managing data transfers in computer clusters

with Orchestra. SIGCOMM ’11. ACM, 2011.
[22] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication.

PVLDB, 2016.
[23] Cisco Systems. Data Center Design Summary, August 2014.

https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/
Aug2014/DataCenterDesignSummary-AUG14.pdf.

[24] P. Costa and et al. Camdoop: Exploiting in-network aggregation for
big data applications. In NSDI ’12. USENIX, 2012.

[25] J. Dean and S. Ghemawat. MapReduce: Simpli�ed data processing on
large clusters. In OSDI’04, San Francisco, CA, 2004.

[26] S. Ganguly, S. Greco, and C. Zaniolo. Extrema predicates in deductive
databases. J. Comput. Syst. Sci., 51(2):244–259, 1995.

[27] P. Gill and et al. Understanding network failures in data centers:
measurement, analysis, and implications. In SIGCOMM, 2011.

[28] J. E. Gonzalez and et al. PowerGraph: Distributed graph-parallel com-
putation on natural graphs. In OSDI, 2012.

[29] J. E. Gonzalez and et al. GraphX: Graph processing in a distributed
data�ow framework. In OSDI, 2014.

[30] A. Greenberg and et al. VL2: A scalable and �exible data center network.
SIGCOMM Comput. Commun. Rev., 2009.

[31] K. Hasanov and A. L. Lastovetsky. Hierarchical optimization of MPI
reduce algorithms. In PaCT 2015.

[32] Intel. Optimize data structures and memory access patterns to improve
data locality. https://goo.gl/xQ3ZGT, 2012. Intel.

[33] V. Jalaparti and et al. Network-aware scheduling for data-parallel jobs:
Plan when you can. SIGCOMM ’15, 2015.

[34] M. Kabiljo and et al. A comparison of state-of-the-art graph pro-
cessing systems. https://code.facebook.com/posts/319004238457019/
a-comparison-of-state-of-the-art-graph-processing-systems/.

[35] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: An
e�cient analysis platform for large graphs. In Proc. VLDB, 2012.

[36] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA: Scalable
load balancing using programmable data planes. In Proc. SOSR, 2016.

[37] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph
computation on just a PC. In OSDI 2012, pages 31–46, 2012.

[38] M. S. Lam, S. Guo, and J. Seo. Socialite: Datalog extensions for e�cient
social network analysis. In ICDE ’13, 2013.

[39] C. E. Leiserson. Fat-trees: universal networks for hardware-e�cient
supercomputing. IEEE Trans. Comput., 34:892–901, October 1985.

[40] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and
mining beyond caveman communities. IEEE TKDE, 2014.

[41] V. Liu and et al. Subways: A case for redundant, inexpensive data
center edge links. CoNEXT ’15. ACM, 2015.

[42] B. T. Loo and et al. Declarative networking: language, execution and
optimization. In SIGMOD ’06.

[43] Y. Low and et al. GraphLab: A new framework for parallel machine
learning. UAI’10. AUAI Press, 2010.

[44] Z. Majo and T. R. Gross. Matching memory access patterns and data
placement for NUMA systems. In Proc. CGO, 2012.

[45] G. Malewicz and et al. Pregel: a system for large-scale graph processing.
In SIGMOD ’10.

[46] F. McSherry. Timely data�ow. https://github.com/frankmcsherry/
timely-data�ow.

[47] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what COST?
In HotOS ’15, 2015.

[48] W. E. Moustafa and et al. Datalography: Scaling datalog graph analytics
on graph processing systems. In IEEE BigData 2016.

[49] Open Compute Project. Server/SpecsAndDesigns, June 2018. http:
//www.opencompute.org/wiki/Server/SpecsAndDesigns.

[50] A. Roy and et al. Chaos: scale-out graph processing from secondary
storage. In SOSP 2015, 2015.

[51] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In SIGCOMM ’15, 2015.

[52] S. Salihoglu and et al. GPS: a graph processing system. In SSDBM ’13.
[53] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed Socialite: A Datalog-

based language for large-scale graph analysis. PVLDB, 2013.
[54] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo.

Big data analytics with Datalog queries on Spark. In SIGMOD ’16, 2016.
[55] J. Shun and et al. Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In Proc. Data Compression Conference, 2015.
[56] A. Singh and et al. Jupiter rising: A decade of clos topologies and

centralized control in Google’s datacenter network. In Sigcomm, 2015.
[57] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in

deductive databases. In VLDB ’91, pages 501–511, 1991.
[58] W. Vogels. https://twitter.com/werner/status/25137574680.
[59] J. Wang and et al. Asynchronous and fault-tolerant recursive datalog

evaluation in shared-nothing engines. PVLDB, 2015.
[60] Y. Yu and et al. Distributed aggregation for data-parallel computing:

Interfaces and implementations. SOSP ’09, 2009.
[61] Q. Zhang and et al. Optimizing declarative graph queries at large scale

(technical report). http://netdb.cis.upenn.edu/papers/graphrex_tr.pdf.
[62] D. Zhuo and et al. RAIL: A case for redundant arrays of inexpensive

links in data center networks. In NSDI ’17, 2017.
[63] D. Zhuo and et al. Understanding and mitigating packet corruption in

data center networks. In SIGCOMM, 2017.

A RELATION PARTITIONING
Algorithm 1 shows the speci�c relation partitioning algo-
rithm that is adopted in the Static Optimizer. For each rela-
tion r, if there is only one attribute being marked as ‘*’, then
r is partitioned by that attribute, because that is the only
vertex attribute that can maintain the tuples of r; otherwise
the static optimizer enumerates every possible partitioning
and selects the one with the minimum number of SHUFFs.
We assume the heuristic that recursive rules are executed
many times. This assumption is reasonable as practical graph
queries often run more than one iteration because of the
dense connectivity between vertices in real-world graphs.

B GRAPHREX DSN EVALUATION
The Distributed Semi-Naïve in GraphRex (GR-DSN) pseu-
docode is shown inAlgorithm 2. Here,wi represents aworker

Algorithm 1 Static Relation Partitioning
1: �_atts get the list of marked attributes of r
2: if size of �_atts = 1 then
3: Mark the attribute as the partition key
4: else
5: � argmin� (the number of SHUFF operators in the

physical plan based on partition key � 2 �_atts)
6: Mark � as the partition key

Algorithm 2 Distributed Semi-Naïve in GraphRex

1: function I���(�)
2: NewTuples� eval(BaseRules, ��)
3: AllTuples� NewTuples�

4: function R����(�)
5: NewTuples� eval(RecurRules, �� , NewTuples�)
6: NewTuples� NewTuples� � AllTuples�
7: AllTuples� AllTuples�

–
NewTuples�

8: function O�R���(�)
9: NewTuples� NewTuples�

–
�’s received tuples

10: NewTuples� NewTuples� � AllTuples�
11: AllTuples� AllTuples�

–
NewTuples�

12: for each vertex � 2 Vi do
13: init(�)

14: loop until the coordinator signi�es to terminate
15: for each vertex � 2 Vi do
16: if the size of NewTuples� > 0 then
17: recur(�)

18: if the size of NewTuples� = 0 then
19: sleep(�)

)������

(���(��

�������

����������

	������

(���(��

������

Figure 19: Vertex states in DSN.

that stores the subgraph Vi , and each vertex � maintains its
own vertex id id� and the edge list �� .

The GR-DSN algorithm works as follows. Initially,wi ini-
tializes each vertex with init function (line 12-13). Speci�-
cally,wi creates a local table r� for each vertex � and each
relation r except edge relation. Recall that the logical plan
already ensures that all relations are indexable by vertex. In
the init function (line 1-3), base rules are evaluated, which
generates the initial tuple set NewTuples in each relation,
and the entire tuple setAllTuples is initialized to be the same
set.wi then loops to iteratively evaluate recursive rules. In
each iteration, wi checks if new tuples were generated in
last iteration (the � tuples in semi-naïve evaluation [42]) at
vertex � and uses recur function to evaluate recursive rules
one time, otherwise calls sleep to deactivate � (line 14-19).
Inside recur, the recursive rules are evaluated based on ��
and NewTuples of last iteration to generate new NewTuples

(line 5), and then the deduplication is performed to eliminate
redundant evaluation (line 6) and the resulting tuples are
merged to the entire tuple set (line 7).

In the eval function, the corresponding part of execution
plan is evaluated; and the executor consults the dynamic opti-
mizer to execute each global operator e�ciently. In particular,
A SHUFF operator sends around new tuples according to
their partition key. If a vertex � receives tuples, the callback
function onrecv is invoked to handle the tuples. Speci�cally,
the received tuples are merged to NewTuples� and dedupli-
cated, and also added to AllTuples� (line 8-11).
Vertex states. A vertex in GraphRex could be in one of
three states: initialized, running and sleeping. A vertex enters
initialized after calling init to evaluate the base rules, and
transitions to running on calling recur, where the recursive
rules are iteratively evaluated in GR-DSN.

A signi�cant di�erence from traditional, centralized semi-
naïve evaluation is that when a vertex has no new tuples, it
transitions to sleeping; if later, new tuples are received, the
vertex will be activated again and transition into running
again. This design ensures that the distributed evaluation
converges globally rather than locally at a vertex level. The
recursion reaches a �xpoint when: (1) all vertices in the
graph are at the sleeping state, and (2) no tuples are being
shu�ed, i.e., no vertex received new tuples. The coordinator

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Flow Size (Byte)

(a) Flow size distribution in
real data centers.

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200 1400 1600 1800
O

ve
ra

ll
Tr

affi
c

(G
B)

Seconds

Intra-rack only
Inter-rack

Total

(b) Summarized pattern of
background tra�c.

Figure 20: Background tra�c generation.

sends termination signal toworkerswhen either the speci�ed
number of iterations or the �xpoint is reached.

C GENERALIZATION OF JOIN ORDERING
Here we explain how adaptive join ordering is applied to
a 4-way join example: r(X,Y) :- e(X,A), r(A,B), e(B,C),
e(C,Y). Given a new r tuple, there are three possible left-
deep join orders: (1) (((e Z r) Z e) Z e), (2) ((e Z (r Z
e)) Z e), and (3) (e Z ((r Z e) Z e)). The costs (in terms of
the numbers of intermediate tuples) of the three orders for
r(v1,v2) are: (1) C1 = InDe�(v1) + InDe�(v1) ⇥OutDe�(v2),
(2) C2 = OutDe�(v2) + InDe�(v1) ⇥ OutDe�(v2), and (3)
C3 = OutDe�(v2)+Out2De�(v2), where InDe�(�) is�’s inde-
gree,OutDe�(�) is �’s outdegree andOut2De�(�) is �’s two-
hop outdegree. Therefore, the global information needed by
GraphRex for this query is: the indegrees of all vertices, the
outdegrees of all vertices and the two-hop outdegrees of all
vertices, which is O(|V |) where V is the set of vertices. This
information can be computed o�ine and loaded by Graph-
Rex as index, so that when GraphRex enumerates the three
orders for a tuple, the costs of the orders can be e�ciently
computed and GraphRex selects the order with minimum
cost for this tuple. Similarly, the adaptive join ordering can
be extended to other values of n for n-way joins.

D DATACENTER TRAFFIC GENERATOR
We generate background tra�c by using the commonly used
datacenter �ow patterns from DCTCP [13]. Figure 20a shows
DCTCP �ow size distribution, and Figure 20b shows an ex-
ample of the random background tra�c that we inject into
our testbed (the �rst half hour). The blue line represents the
total volume of intra-rack only tra�c in each second, and
red line represents inter-rack tra�c. We note that inter-rack
tra�c also consumes the bandwidth of intra-rack links. The
total tra�c volume in every second is represented in black
line. We control the overall network utilization as 40%.

(a) The baseline. (b) GraphRex.

Figure 21: Heat maps of tra�c volume (number of
bytes sent between servers, values are log 10 scale) for
CC on Friendster.GraphRex (b) saves 94.8% tra�c com-
pared to the infrastructure-agnostic baseline (a).

����

�

�
 	��
��

Figure 22: Heat map of cross-server communication.

E COMMUNICATION PATTERN
Figure 22 shows the communication cost distribution in
the datacenter, with three layers: (1) communications inside
servers require no network tra�c (the left diagonal in the
server matrix), (2) communications between servers in the
same rack require tra�c to be sent intra-rack (the light blue
areas), and (3) communications between servers in di�erent
racks, which incur the highest tra�c cost.

Figure 21 compares GraphRex against the infrastructure-
agnostic baseline in terms of the communication patterns. Al-
though the baseline has server-level locality, i.e., each worker
sends more tra�c to the workers in the same server than
the workers in other servers, it ignores the network struc-
ture and treats all other servers as the same. However, the
communication pattern in GraphRex results in two bene�ts.
Reduced tra�c: GraphRex prefers low-cost communications
to reduce high-cost tra�c due to its infrastructure-aware
design, minimizing the amount of inter-rack tra�c by incur-
ring additional intra-rack communication. As a result, in this
example, it reduces the tra�c cost by 94.8%.
Fewer connections: In the baseline, every worker directly

builds N �1 connections with all other workers for shu�ing,
where N is the number of parallel workers. In GraphRex,
each worker establishesW � 1 connections with other work-
ers in the same server �rst, whereW is the number of work-
ers in the same server; then, at the rack level, it establishes at

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 3 2 1

Ex
ec

ut
io

n
tim

e
(s

)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 23: Performance
on Friendster.

 0

 100

 200

 300

 400

 500

 600

 700

4 3 2 1
Ex

ec
ut

io
n

tim
e

(s
)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 24: Performance
on UK.

most S � 1 connections with other servers in the same rack,
where S is the number of servers in the same rack. Finally, it
establishes at most R�1 connections with other racks, where
R is the number of racks in the datacenter. Therefore, the
number of connections that each worker builds in GraphRex
is O(W + S + R). In the naïve approach, assuming that all
racks have the same number of servers and all servers have
the same number of workers, we haveO(W ⇥ S ⇥ R) instead.

In summary, The infrastructure-centric design minimizes
tra�c cost by reducing tra�c sent over bottleneck links.

F ADDITIONAL RESULTS
We show results on more workloads in this section.

F.1 Spine Switch Count
Figure 23 and 24 compare the performance of GraphRex
with other systems when querying CC on FR and UK when
we vary the network capacity by changing the number of
spine switches from 4 to 1. The results show similar trend
as on TW that GraphRex is the most robust system when
network performance varies. Among other systems, Power-
Graph is fastest when network capacity is not constrained,
and it is also the most sensitive system to network changes.
Its performance is lower than Giraph on FR when network
capacity is low. Giraph and BigDatalog are also signi�cantly
impacted when the number of switches drops. We omit other
queries for space and note that the �nding of GraphRex be-
ing the most robust system still holds.

F.2 Server-rack Ratio
Figure 25 and 26 present the performance of di�erent sys-
tems for CC on FR and UK, respectively, when the number of
servers in the cluster changes. GraphRex achieves the high-
est speedup when the number of servers in the datacenter
doubles: 1.8⇥ on FR and 1.7⇥ on UK. Although PowerGraph
always has the best performance, it does not scale as well
as other systems, and on UK, its performance does not con-
tinue to improve when the number of servers in each rack

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e
(s

)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 25: Scalability on
Friendster with #Servers.

 0

 100

 200

 300

 400

 500

 600

 700

10 12 14 16 18 20

Ex
ec

ut
io

n
tim

e
(s

)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 26: Scalability on
UK with #Servers.

TW FR UK CW

Timely 25.96s 44.5s 23.5s 464.9s
GraphRex 13.4s 18.5s 9.6s 188.7s

Table 12: Scale-out performance comparison.

 0
 100
 200
 300
 400

10 50 100Ex
ec

ut
io

n
tim

e
(s

)

Link degradation

Timely
GraphRex

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40

Pe
rc

en
ta

ge
 (%

)

Running Time (s)

GraphRex Timely

 10
 15
 20
 25
 30
 35
 40

4 3 2 1Ex
ec

ut
io

n
tim

e
(s

)

#Spine Switches

Timely
GraphRex

Figure 27: Comparison with Timely.

is higher than 16. Adding more machines improves the per-
formance of Giraph and BigDatalog, but their scalability is
not as good as GraphRex which minimizes the impact from
network constraints, and scales better with more resources.

F.3 Comparison with Timely Data�ow
Table 12 compares the distributed performance between
GraphRex and Timely in PageRank. GraphRex outperforms
Timely by 1.9⇥, 2.4⇥, 2.4⇥ and 2.5⇥ on TW, FR, UK and CW,
respectively. Figure 27 shows experiments under di�erent
network situations. As we can see, GraphRex is more ro-
bust than Timely. Upper-left �gure shows that when the
number of spine switches drops from 4 to 1, the speedup of
GraphRex over Timely increases from 1.9⇥ to 2.4⇥, lower-
left �gure shows that link degradation severely impacts the
performance of Timely, and the speedup of GraphRex over
Timely goes up from 2.5⇥ to 6.8⇥ when the link capacity
drops from 1⁄10 to 1⁄100. The right �gure presents the CDF of
running times of GraphRex and Timely under random back-
ground tra�c, showing that GraphRex has better and more
stable performance (� = 0.7) than Timely (� = 3.7) when
noise is present.

