G-Miner: An Efficient Task-Oriented Graph Mining System

Hongzhi Chen Miao Liu Yunjian Zhao
The Chinese University of Hong Kong The Chinese University of Hong Kong The Chinese University of Hong Kong
hzchen@cse.cuhk.edu.hk mliu@cse.cuhk.edu.hk yjzhao@cse.cuhk.edu.hk
Xiao Yan Da Yan James Cheng
The Chinese University of Hong Kong The University of Alabama at The Chinese University of Hong Kong
xyan@cse.cuhk.edu.hk Birmingham jcheng@cse.cuhk.edu.hk
yanda@uab.edu
ABSTRACT large graphs. These systems follow the vertex-centric programming

Graph mining is one of the most important areas in data mining.
However, scalable solutions for graph mining are still lacking as
existing studies focus on sequential algorithms. While many dis-
tributed graph processing systems have been proposed in recent
years, most of them were designed to parallelize computations such
as PageRank and Breadth-First Search that keep states on individual
vertices and propagate updates along edges. Graph mining, on the
other hand, may generate many subgraphs whose number can far
exceed the number of vertices. This inevitably leads to much higher
computational and space complexity rendering existing graph sys-
tems inefficient. We propose G-Miner, a distributed system with
a new architecture designed for general graph mining. G-Miner
adopts a unified programming framework for implementing a wide
range of graph mining algorithms. We model subgraph processing
as independent tasks, and design a novel task pipeline to streamline
task processing for better CPU, network and I/O utilization. Our
extensive experiments validate the efficiency of G-Miner for a range
of graph mining tasks.

KEYWORDS
Distributed System, Large-Scale Graph Mining.

1 INTRODUCTION

Graph data exist ubiquitously in a broad range of domains such as
social networks, mobile communication networks, financial net-
works, biological networks and semantic webs. In recent years, we
have witnessed a significant increase in the scale of graph data and,
concurrently, the growing importance of graph mining - the analy-
sis of large-scale graphs to extract insights. To date, a large number
of graph mining algorithms have been proposed, frequent subgraph
mining [42], community detection [11], graph clustering [48], graph
matching [30], to name a few.

Many distributed graph systems [35, 41], such as Pregel [18],
Giraph [3], and PowerGraph [12], have been proposed to process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23-26, 2018, Porto, Portugal

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04...$15.00
https://doi.org/10.1145/3190508.3190545

model [18], in which each vertex plays the role of a processing unit
that maintains a local state and communicates with its neighbors by
message passing (or through shared memory). The vertex-centric
model is suitable for the distributed implementation of many graph
algorithms such as PageRank, connected components, breadth-first
search, etc. These algorithms share a common characteristic: the
computation and communication on the vertices are usually light -
mostly linear complexity in each iteration.

However, graph mining algorithms are fundamentally different
from the aforementioned graph algorithms. Most graph mining
algorithms are much more computation-intensive and/or memory-
intensive, with the computational and/or space complexity often
growing superlinearly or even exponentially due to the well-known
combinatorial explosion problem in the generation of (candidate)
subgraphs. While various pruning strategies are commonly applied,
even pruning algorithms may have polynomial time complexity.

The vertex-centric graph systems do not consider the charac-
teristics of graph mining algorithms in their design. In particular,
the computational model should be more coarse-grained, subgraph-
centric instead of vertex-centric, since each subgraph now plays
the role of a processing unit that maintains a local state and accord-
ingly decides how to involve more vertices for updating. Although a
more natural subgraph-centric model has been adopted in a number
of recent distributed systems for graph mining (e.g., NScale [22],
G-thinker [36], Arabesque [31]), other important elements that
are critical to system performance have not been carefully studied.
As we will analyze in §2-§3, these systems suffer from problems
such as low CPU utilization (due to synchronization barrier) and
high memory consumption (due to subgraph maintenance), both of
which are critical issues for processing computation-intensive and
memory-intensive graph mining workloads.

To address the limitations of existing systems, we propose G-
Miner, based on a re-design of both the computational model and
the system architecture. G-Miner adopts the subgraph-centric pro-
gramming model [22, 36] and presents a general programming
framework for expressing a wide range of graph mining algorithms.
The key design in G-Miner is to streamline tasks so that CPU com-
putation, network communication and disk I/O can process their
workloads without waiting for each other. We summarize our main
contributions as follows:

e We analyze several state-of-the-art graph processing systems
and identify their limitations on graph mining (§2-§3). We
also list the key design criteria for building a distributed
graph mining system (§3).

https://doi.org/10.1145/3190508.3190545

EuroSys '18, April 23-26, 2018, Porto, Portugal

e We encapsulate the processing of a graph mining job as
an independent task, and streamline task processing with a
novel task-pipeline design, which removes synchronization
barrier in existing systems and allows various resources (i.e.,
CPU, network, disk) to work on tasks concurrently (§4.3).

e We develop G-Miner to realize our designs with various
optimizations that further improve the scalability and re-
source utilization. We also propose two graph-mining spe-
cific strategies for load balancing - BDG partitioning for
static load balancing and work stealing for dynamic load
balancing (§5-§7).

To validate the performance and generality of G-Miner, we imple-
mented five typical graph mining algorithms on G-Miner: triangle
counting (TC), maximal clique finding (MCF), graph matching (GM),
community detection (CD) [33], and graph clustering (GC) [21]).
To the best of our knowledge, no existing graph processing system
can handle such a broad range of graph mining problems on large-
scale graphs, especially when the vertices have a high-dimension
attribute list.

Experimental results on real-world graphs show that G-Miner
consistently and significantly outperform existing systems on vari-
ous performance metrics (e.g., running time, CPU utilization, mem-
ory consumption). For simple graph mining problems (e.g., TC)
on small graphs, G-Miner is an order of magnitude faster than
Arabesque [31]. For the medium-heavy workloads (e.g., GM), G-
Miner is 2-6 times faster and uses much less memory than G-
thinker [36], which is the only other system that can run. For the
heavy workloads (e.g., CD, GC) that no other system can handle,
G-Miner still records good performance.

2 RELATED WORK

Vertex/Edge-centric Systems. Most existing graph processing
systems, such as Pregel [18], Giraph [3], PowerGraph [12], GPS [24],
GraphX [13], Pregel+ [38], GraM [34], PowerLyra [8], GraphD [40],
follow the vertex-centric model. In addition to the limitations dis-
cussed in §1, it is also difficult to express a graph mining algorithm
with the vertex-centric programming paradigm. This is because
the vertex-centric programming paradigm requires users to specify
the algorithm logic for each individual vertex so that the runtime
may execute it in parallel. However, for many graph mining algo-
rithms, they may generate a lot of subgraphs and the algorithm
logic is more attached with each subgraph instead of on any sin-
gle vertex. The edge-centric model is another popular framework
for graph processing, mainly adopted in out-of-core systems such
as GraphChi [14], X-stream [23], GridGraph [49] and Mosaic [17],
which also suffer from similar limitations for handling graph mining
workloads as with vertex-centric systems.

Graph-centric Systems. Giraph++ [32] and Blogel [37] proposed
the graph-centric model, which partitions the input graph into dis-
joint subgraphs and assigns them to different nodes. The vertices
inside a subgraph send messages to each other through in-memory
message buffer while the communication among subgraphs is con-
ducted via the network. However, these systems only aim to reduce
the amount of message passing among machines and are still de-
signed to solve the same class of problems as vertex-centric systems.

Hongzhi Chen et al.

System Cores Mem. (GB) Net. (GB) CPU Util. Time (s) Note
Single-thread 1 23.29 0 100% 86640.3 Succeed.
Arabesque #24x 8 268.43 39.87 74.25% Run over 24h.
Giraph #24x8 NA 26.81 43.25% X OOM.
GraphX #24x8 277.71 27.14 11.58% Run over 24h.

G-thinker #24x 8 66.68 36.75 16.20% 164.6 Succeed.

“_n,

Table 1: Performance of max-clique finding (“-": >24 hours;

“on,

x": job failed as out of memory)

Thus, they have similar problems in expressing a graph mining al-
gorithm and their system designs are not suitable for graph mining.

Others. NScale [22] was designed to solve graph mining problems
using the MapReduce framework. It proposed a neighborhood-
centric model, in which a k-hop neighborhood subgraph of an
interest-point is constructed with k rounds of Map-Reduce and
each round of Map-Reduce extends the 1-hop new neighbors. Once
all the candidate subgraphs have been constructed, NScale exe-
cutes a final round of Map-Reduce job to verify each candidate.
However, the total number of all candidate subgraphs to be con-
structed can be very large, and the overhead of MapReduce is also
high. G-thinker [36] extends the neighborhood-centric model of
NScale to a subgraph-centric model, which regards each grow-
ing subgraph in the mining process as the basic processing object.
This fine-grained computational model, together with in-memory
processing, enables G-thinker to achieve better performance than
NScale. However, G-thinker still follows a batch processing frame-
work to execute the computation and communication parts of a
job in batches, which makes it hard to fully utilize the CPU and
network resources. Arabesque [31] proposed an graph exploration
model with the concept of embedding. Specifically, the exploration
proceeds in rounds, where in each round the existing embeddings
are expanded by one neighboring vertex or edge. The newly gener-
ated embedding (called candidate) is further processed by a filter
function for pruning. Limited by its MapReduce-based framework,
the pruning step is only executed after the exploration steps, which
can generate a large number of candidates and thus waste a substan-
tial amount of computation and memory on invalid embeddings.
Compared with G-Miner, a fundamental design in these systems is
that they all adopt a batch processing framework, which results in
synchronization barrier. The barrier cannot be easily removed un-
less they abandon batch processing, which may lead to a complete
system re-design. In addition, they also do not consider dynamic
load balancing such as work stealing in G-Miner.

3 MOTIVATION

In the previous section, we have briefly analyzed the pitfalls in
the designs of existing systems for solving graph mining problems.
To demonstrate the limitations of existing systems and motivate
the design of G-Miner, we tested the state-of-the-art graph mining
systems, Arabesque [31] and G-thinker [36], as well as two popular
vertex-centric systems, Giraph [3] and GraphX [13], using 8 nodes
in our cluster (see configuration in §8). The workload is maximum
clique finding and the dataset is Orkut (details in Table 2). We did not
include NScale [22] because it is not open source. The performance
of a single-threaded implementation is provided as a baseline.

G-Miner: An Efficient Task-Oriented Graph Mining System

We report the results in Table 1, from which we can identify the
following problems with these systems.

Low CPU utilization. The single-threaded implementation took
86,640 seconds with 100% CPU utilization, which shows that graph
mining is CPU-intensive (note that Orkut is only a medium-sized
graph). However, most of the distributed systems have low CPU
utilization. G-thinker’s low CPU usage is due to its batch process-
ing between communication and computation as explained in §2,
while that of the other systems are mainly caused by their bulk
synchronous parallel (BSP) mechanism.

High memory consumption. Arabesque, Giraph and GraphX all
consume a large amount of memory as they need to construct all
the 1-hop neighborhood subgraphs before the start of computation.
The high memory consumption may even cause a system to run out-
of-memory (OOM) on a medium-sized graph and hence severely
limits the scalability.

Mismatch of computational model. The performance problems
of the above systems are mainly due to their computational models,
which in turn lead to unsuitable system designs for graph mining.
As we briefly explained in §2, the synchronization barrier these
systems inherited from the BSP model exacerbates the straggler
problem as graph mining problems usually have a heavy workload.
Extending these systems to include an asynchronous model will
require fundamental changes to their system design and imple-
mentation, which would likely change them into completely new
systems.

To conclude, the bottlenecks for processing graph mining work-
loads are intensive CPU computation and high memory consump-
tion. Our design addresses these bottlenecks with (1) a computa-
tional model specialized for solving graph mining problems; (2) fully
utilizing all CPU cores by removing synchronization barriers, and
hiding network communication and disk I/O overheads; (3) bounded
memory consumption to avoid OOM; (4) transparent load balancing
and fault tolerance.

One interesting observation is that G-thinker has superlinear
speedup compared with the single-threaded implementation (528x
speedup with 192 cores). This is because the global currently-maximum
clique is used to prune unpromising search space in each local
worker. Thus, parallel maximum clique finding enjoys not only
the aggregate computing power of the machines, but also a faster
reduction in the search space in parallel. In other words, here we
have two factors that lead to the superlinear speedup: (1) parallel
computing power, and (2) parallel pruning. In the case of maximum
clique finding, (2) apparently leads to more speedup. As such prun-
ing is common in graph mining algorithms, this interesting result
reveals an extra benefit of distributed computing for graph mining.

4 SYSTEM DESIGN

To address the bottlenecks of existing systems identified in §3,
we propose a novel task-pipeline design that allows CPU com-
putation, network communication, and disk I/O to be processed
asynchronously throughout the entire job process, so that the com-
munication and disk I/O overheads can be hidden within the cost of
CPU computation. We first present a general graph mining schema
and a basic task model, which are necessary for illustrating the idea
of the task-pipeline.

EuroSys *18, April 23-26, 2018, Porto, Portugal

Graph notations. A graph is represented by G = (V, E), where V
is the set of vertices and E is the set of edges. Each vertex v € V has
an ID id(v), an adjacency list T'(v) that keeps the set of neighbors of
v, and an optional attribute list a(v) that is usually a vector storing
a user’s property such as age, sex and location. For simplicity, our
discussion focuses on undirected graphs, though our system can
also handle directed graphs.

4.1 General Graph Mining Schema

G-Miner aims to provide a unified programming framework for
implementing distributed algorithms for a wide range of graph
mining applications. To design this framework, we need to first
identify a common pattern for existing graph mining algorithms.

We focus on the following five categories of typical graph min-
ing problems: (1) subgraph/graphlet enumeration (e.g., triangles [26],
cliques [6], quasi-cliques [1], size-k graph- lets [2]); (2) subgraph
matching [30] (i.e., listing all occurrences of a set of query subgraphs);
(3) subgraph finding (e.g., maximum clique finding [5], densest sub-
graph finding [10], etc.); (4) subgraph mining (e.g., frequent graph
mining [43], community detection [11], correlated subgraph min-
ing [28], etc.); (5) graph clustering [25, 48].

By carefully studying the above mentioned graph mining prob-
lems, we devise a general computing schema as follow. The graph
mining job usually starts from a set of seed subgraphs (typically
initialized as individual seed vertices), which are selected by the init
operation based on some initial conditions, and then recursively
performing an update operation on each subgraph g, which may
grow (by adding neighbor vertices), shrink (by pruning some parts),
split (into more subgraphs), delete or report g (i.e., g is not or is a
match). Normally, the computation of update has high complexity
(e.g., polynomial) and is closely dependent on the intermediate
subgraph.

4.2 Task Model

To support asynchronous execution of various types of operations
(i-e., CPU, network, disk) and efficient load balancing, we model
a graph mining job as a set of independent tasks. A task consists
of three fields: (1) a subgraph g, (2) candidates, and (3) context. The
computation of a task proceeds in rounds. In each round, the task
accesses these three fields and updates them according to the user-
defined algorithm logic. During the process, g is used to keep or
update the topology of the intermediate subgraph generated in each
round, until it is reported as a result or deleted (i.e., no result can be
produced from g). The candidates records the IDs of the candidate
vertices that will be used to update g in the next round. The context
is used to hold other essential information (e.g., the current round
number, the count of matched patterns).

The candidates are usually generated from the 1-hop neighbors
of g, i.e., T'(v) of each v in g. A filter function, which implements
pruning strategies in a graph mining algorithm, can be applied to
exclude irrelevant neighbors in order to reduce the search space.
If a candidate vertex v is not in the local machine (either the local
graph partition or local cache), we will pull v with the associated
data (e.g., I'(v), a(v)) from a remote machine. To avoid repetitive
pulling, we use a local cache to store the remote v.

EuroSys '18, April 23-26, 2018, Porto, Portugal

Pattern P

Data Graph

gmatch_Task

context:
round =1
count=0

subgraph G: (3 nodes)
3>4,5
4->3,5
5>34

candidates (for round 2):
6,7,8,9

Figure 1: Task model for graph matching

The task model is inspired by the task concept in G-thinker [36]
(also implicitly adopted in NScale [22]), we model it as an inde-
pendent graph mining object for asynchronous execution with the
task-pipeline (§4.3) and load balancing with task stealing (§6.2).

Example. We use graph matching to illustrate the concepts intro-
duced so far. As shown in Figure 1, we generate a task from the
seed vertex, v3, as v3 matches the label ‘a’ of the root of the query
pattern. Accordingly, subgraph g is initialized as v3, and candidates
is {v1,v2,v4,v5}. In round 1, g grows from v3 to include v4 and
v5 since the labels of v4 and v5 are ‘b’ and ‘c’, matching the labels
of the next level in the query pattern; while vertices v1 and v2
are filtered. Then, candidates is updated to be {v6,v7, v8,v9}, since
filtering removes all vertices except the neighbors of the vertex
with label ‘¢’, i.e., v5, which will be matched in the next round. As
for the context field, we set the current round number to 1, and
count is used to record the number of subgraphs matched with the
query pattern in this task.

Task lifetime. Each task has a lifetime, which starts from the
initialization from a seed vertex and ends at the completion of the
processing on its subgraph. During its lifetime, a task takes one
of the following four statuses: active, ready, inactive and dead. A
task is active when it is currently being processed by the update
operation. Then, the candidates in the task will be modified. If there
is at least one vertex in candidates that needs to be pulled from a
remote machine, we convert the status of the task to inactive. The
task status will be changed to ready when all its remote candidates
are pulled, i.e., now the task is ready to be processed. Note that if a
task has no remote vertex in the candidates in the current round,
it will directly enter the next round of update without any status
change. Task processing in G-Miner has no barrier among workers
or within a worker. A task is dead when either the results have been
found and reported, or it is confirmed that no result can be found.
G-Miner then deletes the dead task and releases all the resources
taken by it.

4.3 Task-Pipeline

Now we present the task-pipeline, which is designed to asynchronously

process the following three major operations in G-Miner: (1) CPU
computation to process the update operation on each task, (2) net-
work communication to pull candidates from remote machines, and
(3) disk writes/reads to buffer those intermediate tasks on local disk.

We need (3) in order to bound the memory usage for the follow-
ing reason. Most subgraph/graphlet enumeration or counting prob-
lems may generate an exponential number of candidate subgraphs,

Hongzhi Chen et al.

commun thread Task Store

(T TN T T)
[Response || = S L L LT[
Request: L w _Mim@_) _ DEk _____ J

v9, v10
RCV Cache] Candidate Retriever
vid | ref || candidates cMQ
RCV
el s s momm|)
Update v8 2 Task Executor
Insert v9 1 cPQ N
Insert v10 1 6|7|8|9|10|11I l "_
n computing threads Task Buffer

2|1
aong

Figure 2: Task-Pipeline

while subgraph mining problems suffer from the well-known com-
binatorial explosion problem. Thus, there can be a large number of
newly generated tasks to be processed in order to keep the CPU
cores busy for high efficiency, but this may exhaust the available
memory.

The task-pipeline consists of three components: task store, candi-
date retriever, and task executor, as illustrated in Figure 2. The task
store manages all inactive tasks with a priority queue, the candidate
retriever handles the pulling and caching of remote candidates, and
the task executor is to execute the mining jobs of active tasks. We
describe more details and how they interact with each other as
follows.

Task Store. The task store manages all inactive tasks in a local
worker. As different tasks may request common candidate vertices
from remote machines, we use a local cache to avoid pulling these
remote vertices repeatedly. However, a simple cache strategy may
have poor hit rate as we illustrate in Figure 3. Assume that the
cache has size = 3, and vertices with vid > v8 are in remote
machines. We first process Taski, and in round 2 we need the
remote candidates {08, v9, v10}. After pulling them, we insert {08,
v9, v10} into the local cache. Then, Task; needs to pull {v12, v13},
which refreshes the cache to {v12, v13, v10}. Next, Tasks needs to
pull {v8, v9, v14} in round 3, and refreshes the entire cache. Tasky
requires {v8, v12, v13}, but only v8 is in the cache. Thus, the total
hit number of the cache is only 1 (i.e., v8) for executing these 4
tasks.

To improve the hit rate and hence avoid repetitive remote vertex
pulling, we propose a task priority queue to order tasks such that
tasks with common remote candidates are kept near each other. For
example, at the bottom of Figure 3 we order Tasks next to Task;
based on their common remote candidates v8 and v9. When we
process tasks in this order, the final hit number of the cache is
improved to 5, as shown in Figure 3. The details about how we
order tasks in the task priority queue will be presented in §7.

To bound the memory usage, the task store keeps a subset of
higher-priority tasks in memory, while the remaining tasks are kept
on local disk. The use of this disk-resident data structure does not
affect the performance of G-Miner as we will explain at the end of
this section.

Candidate Retriever. The candidate retriever handles the tasks
dequeued from the task store and prepares the remote vertices in
their candidates fields by pulling. Specifically, for each task, the

G-Miner: An Efficient Task-Oriented Graph Mining System

Format - sk @)) rsk2@m) [Tesk3s@)} [_Teskaq))
ormat - uwww) (v) 1 (Lwevsw 1 (swuaus)
Task name (round) H 1 pull H 1 opull H
() | () ! |
e e J :
; pull : i : :
Remote Vertex: 1 | 1 Task 3 (3) 1 !
1 1
vid >=v8 i ' v vZv8vgvia) '
1 1
i i I pull i i
1 1 1 1 1
1 1 1 1 1
Remote ! ! ! ! !
Vorton Corvitiates: (o] 1 [(vzus] v [swue]) 1 [gu2uz]

Cache [v8[v9[v10”v12[v13[v10” v8 [v9 [V14[[V8[V12[V13[

Taskl Task3 Task4 Task2
priority Queue : «—{ vgwg,v10 }——{vg 914 J—{vgu1z13 J—A vizv13 J—

Cache [VS[V.‘?[VIDHVB[VS[VIII[[v8 [vlz[v13‘[vs[v12[v13‘

Figure 3: Task Priority Queue

candidate retriever first checks if there are any remote vertices
already existing in the local cache. Then, it issues pull requests for
those vertices that are not in the cache. After that, this task will
be inserted into the communication queue (CMQ) waiting for the
pull responses. Once all remote candidates for a task are ready (i.e.,
already pulled and accessible in the cache), the status of this task
will be converted to ready to indicate it can be dequeued from the
CMQ for further processing.

We also propose a Reference Counting Vertex Cache (RCV Cache)
to manage those remote vertices obtained by pulling. The design
utilizes the properties of the task-pipeline and task priority queue.
When a remote vertex is inserted into RCV Cache, it has a high
probability to be accessed again by the subsequent tasks in the
pipeline, as enabled by the design of the task priority queue. RCV
Cache keeps a reference count for each cached vertex to record
the number of ready or active tasks referring to it. This count will
be updated once a referred task changes its status to other cases.
Such reference count plays an important part in our cache update
strategy (see §7).

Task Executor. All ready tasks from the candidate retriever will
be inserted into a computation queue (CPQ) managed by the task
executor. The task executor consists of a pool of computing threads
to process tasks in the CPQ in parallel. Each computing thread
executes the update operation on the task, and after that checks if
the status of the task should be changed to inactive or dead.

If the task becomes inactive, then the computing thread inserts
it into a task buffer maintained by the task executor. The tasks
in this buffer are inserted into the task store in batches, as batch
processing can gather those tasks with common remote candidates
together in advance. If the task remains to be active, meaning that
all vertices in the updated candidates are already in RCV Cache
and/or local graph partition, then the computing thread simply
proceeds to execute it for the next round.

Example. Figure 2 illustrates the design of our task-pipeline. The
communication thread of the candidate retriever dequeues task Tig
from the priority queue of the task store, and is now handling the
vertex pulling for Tig. Tig has 3 remote vertex candidates {vg, v9,
v10}, but vg is already in RCV Cache. Thus, the communication
thread only requests vg and v1o from remote machines, and inserts
Tys into the CMQ. When vg and vjg are pulled, they are inserted

EuroSys *18, April 23-26, 2018, Porto, Portugal

Worker i Master
'd)
(Cgraphloader) (_partitioner J— — — —>{_partitioner)
[vertex table]
;
task generator scheduler
request listener
HDFS I
[progress reporter]- — +[progress collector]
context
[aggregator]4— —q4— —-[aggregator]
task results
§ J

Figure 4: System Architecture

into RCV Cache and their ref count is initialized as 1 (while ref of
vg was incremented to 2). Meanwhile, Tig is set as ready and will be
inserted into the CPQ. The task executor dequeues T4 and T5 from
the CPQ, and assigns them to available computing threads. They
will be inserted into the task buffer if vertex pulling is needed.

The task-pipeline not only streamlines task buffering and storing
to disk, communication to obtain remote candidates, and task com-
putation, but also allows disk I/O, network, and CPU cores to do
their own work concurrently. In this way, the overheads of the disk
I/0O and network communication can be hidden in the higher cost
of CPU computation. Note that for some problems, if the communi-
cation (or disk I/O) overhead is high, we can re-allocate the threads
to the candidate retriever and the task executor proportionally.

5 SYSTEM ARCHITECTURE AND API

We now present the system architecture of G-Miner, introduce its
API and demonstrate how to use the API with an example.

5.1 System Architecture and Components

G-Miner adopts a master-slave shared-nothing architecture, as
shown in Figure 4. One node in the cluster serves as the master,
and is in charge of graph partitioning, task stealing, scheduling, etc.
Other nodes play the role of slaves to process tasks. By default we
deploy only one G-Miner process (i.e., one worker) in each slave
node in the cluster to enable cache sharing by all the cores, which
maximizes both CPU utilization and cache efficiency. G-Miner also
supports multi-process deployment in each slave node, but there
is no cache sharing among threads from different processes in the
same node.

We use HDFS as the underlying persistent storage. Each worker
W; loads a piece of graph data P; by the graph loader and stores the
vertices, including their state (id(v), I'(v), a(v)), into its local vertex
table. Then, the partitioner in the master communicates with the
partitioner component in each worker to obtain the graph metadata
of P;, and executes a specific partitioning strategy to re-distribute
the vertices to workers.

A graph mining job starts from task generation by the task gen-
erator. The task generator scans the vertex table to select the seed
vertices, and then generates one task for each seed. These tasks are
fed into the task-pipeline.

EuroSys '18, April 23-26, 2018, Porto, Portugal

template <class KeyT, class ContextT, class AttrT>
class Task {

typedef Vertex<KeyT, AttrT> VtxT;

Subgraph<KeyT, AttrT> subG;

ContextT context;

vector<KeyT> candVtxs;

void pull(vector<KeyT>& candVtxs);

virtual void update(vector<VtxT> &candVtxObjs)=0;

O 00N O\ UT R WD

};
template <class TaskT>
class Worker {
typedef TaskT::VtxT VtxT;
virtual VtxT vtxParser(string s)=0
virtual void output()=0;
virtual TaskT init(VtxT v)=0;

e e
U W N = O

3}
template <class ContextT>

class Aggregator {

19 virtual void agg(ContextT &context)=0;
¥

=
0

)
S

Listing 1: API of G-Miner

An aggregator may be used to access the context of each task for
global communication and monitoring. For example, for maximum
clique finding, a maximum aggregator can be used to record and
notify all workers of the current maximum size of a clique found
globally, which helps local pruning by each worker.

Each worker also has a request listener to handle requests for
vertex pulling or tasks stealing from other workers. To implement
task stealing, each worker has a progress reporter that sends its
local progress to the master periodically, while the master uses a
progress collector to receive the reports. Thus, the master maintains
a global view of the workers’ progresses, which is used by the
progress scheduler to facilitate dynamic migration of tasks from
busy workers to idle workers.

5.2 G-Miner API

Following the general graph mining schema (§4.1) and task model
(§4.2), G-Miner provides an user-friendly API to express a broad
range of graph mining algorithms. To write a G-Miner program,
users only need to subclass two predefined classes, Task and Worker,
to implement two key virtual functions, init() and update(), for their
specific mining problems (see Listing 1).

The three template arguments of Task class (i.e., KeyT, AttrT, Con-
textT) define the data type of vertex ID, attribute and context. Each
Task uses three variables {subG, candVixs, context} to maintain the
three fields in the task model. Users override the update() function
to implement the graph mining algorithms and accordingly update
subG and context by accessing the vertex instances candVtxObjs
pointed by candVixs, and then reset it through pull() for the next
round.

The vixParser() and output() functions in Worker class define
how to load and parse a vertex from HDFS into memory and how
to output the results to HDFS, respectively. And the init() function
handles seed selection and task generation. Moreover, users may
also implement an agg method in Aggregator class to specify how
to apply global aggregation periodically based on the results in
context.

5.3 Programming With G-Miner

G-Miner’s API allows us to implement a wide range of graph min-
ing algorithms, for example, the five categories of algorithms listed

Hongzhi Chen et al.

1| class GMTask: public Task<int, pair<int, int>, char>{
2 void update(vector<VtxT> &candVtx0bjs){

3 // context is a pair of (round, count).

4 r = context.round;

5 S = match(candVtxObjs, labels at level r);

6 if (!S.empty()) {

7 subG.addNodes (S);

8 //to set new candVtxs based on S

9 candVtxs = ...

10 if (r == max depth of pattern)

11 context.count += # of matched patterns;
12 else

13 pull(candVtxs);

14 3

15 3

16| 3;

17| class GMWorker: public Worker<GMTask> {

18 VtxT vtxParser(string s) { /* parse vertex */ }
19 void output() { /* dump results to HDFS %/ }

20 GMTask init(VtxT v) {

21 if (v.label == pattern.root.label) {

22 t = new GMTask;

23 t.subG.addNode (v);

24 addTask(t);

25 3}

26 3

27| 3;

Listing 2: Graph matching implementation on G-Miner

in §4.1. We implemented five graph mining algorithms for per-
formance evaluation in §8.2 (all code will be released). We also
demonstrate how to implement a basic graph matching algorithm
in Listing 2.

GMTask inherits the Task class by setting KeyT and AttrT as int
and char to represent the vertex ID and label, respectively; while
ContextT is defined as a pair of integers, (round, count), to record
the current round and the count of matched subgraphs. In each
round of update(), GMTask matches one level of pattern graph
with candVtxObjs based on their labels by the function match().
The return value S of match() will be added into subG if S is not
empty. After that, GMTask picks its new candidates from the 1-hop
neighbors of subG by filtering out those vertices with wrong labels.

Before update() is invoked, the init() function in GMWorker com-
putes the seed vertices whose labels match with the root of the
pattern graph and then generates the corresponding tasks. In addi-
tion, the agg() function in Aggregator can be simply implemented as
a general sum aggregation that reads the context.count to aggregate
the global count of matched subgraphs in the data graph (omitted
due to space limitation).

6 LOAD BALANCING

G-Miner supports both static load balancing (by graph partitioning)
and dynamic load balancing (by task stealing).

6.1 BDG Partitioning

Most existing graph systems adopt random hashing as the default
partitioning algorithm. However, as the computation of most graph
mining problems focuses on local subgraphs, keeping the locality
in the input graph can avoid expensive remote candidate pulling.
To this end, we propose a Block-based Deterministic Greedy (BDG)
partitioning, though G-Miner also allows users to implement their
own partitioning strategy.

BDG first cuts an input graph into fine-grained blocks to avoid
breaking the locality and then assigns these blocks to different
workers according to a greedy algorithm. We obtain the blocks by

G-Miner: An Efficient Task-Oriented Graph Mining System

a multi-source distributed BFS. Each source is assigned a distinct
color, and broadcasts its color to its neighbors. Each uncolored
vertex, upon receiving the colors from its neighbors, sets its color
to be one of the received colors, and then broadcasts its color to its
neighbors. Vertices with the same color then form a block. To limit
the size of a block, we set the number of steps taken by BFS from
each source to a small value, and repeat the above process until all
vertices are colored. The source vertices are randomly selected from
the entire graph. In some cases when there are many tiny connect
components (CCs) in the graph, selecting sources by sampling may
not be effective. However, this can be easily fixed by running a CC
finding algorithm (e.g., Hash-Min [39]) on the uncolored vertices
after a few rounds of BFS coloring, and then simply consider each
CC as a block.

We then apply a deterministic greedy algorithm on these blocks,
which is motivated by [29]. Assume that we want to partition a
graph into k parts for k workers and each partition has an expected
capacity C = |V|/k. Let T'(B) be the 1-hop neighbor blocks of the
block B, and P(i) be the set of vertices which belong to the blocks
that have already been assigned to partition i. Then, for each unas-
signed block B, we assign it to partition j based on Eq. 1.

[P()]

j = axg max;eqi (IPG) NT(B) = (1= 2] 8

The block-based deterministic greedy strategy guarantees that
each B is distributed to partition j whose P(j) has high overlap with
B and still has sufficient free capacity to take B. As the algorithm
follows a greedy strategy, the assigning order of blocks can affect
the final partitioning quality. We sort the blocks in descending order
of their sizes and then start the assignment from the largest block.

6.2 Task Stealing

Although BDG partitioning provides static load balancing by bal-
ancing the number of vertices in each worker and preserving the
locality of the partitioned graph data, the workload of a specific
task is related to many factors (e.g., |candVixs|, |subGl|) and hard to
predict. Thus, the workload distribution among each worker can be
quite imbalanced. To address this issue, we propose a dynamic task
stealing mechanism in order to improve the overall performance of
G-Miner.

The progress reporter on each worker regularly reports the num-
ber of tasks with different statuses in the task-pipeline to the master,
and the progress listener in the master maintains a global progress
table. When a worker W; completes all its local tasks, it sends a
REQ message to the master to request more tasks to execute. The
master checks its progress table for the most heavily loaded worker,
Wj, and sends a MIGRATE message to W;. Then, W; migrates Tpym
tasks to W; from its task priority queue, if the number of its inactive
tasks is larger than Tyym; otherwise it directly sends a No_Task
message to W;. The tasks are migrated in batches of size Ty, for
efficient network transmission.

While task independence in our task model design allows tasks
to be easily migrated from one worker to another, task migration
itself may involve expensive network communication. If we migrate
a task whose subgraph is large, the extra migration cost may offset
the benefit gained from task stealing. Similarly, if a task has high
dependency on the local graph partition P}, after migrating to Wj;, it

EuroSys *18, April 23-26, 2018, Porto, Portugal

will incur costly communication for vertex re-pulling from W;. To
address the above issues, we define a cost function ¢(t) to measure
the cost of migrating task ¢, as well as a local rate [r(t) to measure
the dependency of t on its local graph partition, as shown in Eq 2
and Eq 3.

c(t) = |t.subG| + |t.candVtxs|, @)

|t.candVitxs| — |t.to_pull|
®3)
|t.candVtxs|
where |t.candVtxs| — |t.to_pull| gives the number of local ver-
tices referred by ¢’s current subgraph. Then, two thresholds, T, and
T,, are set respectively to decide whether a task ¢ can be migrated
(ie., c(t) < T and Ir(t) < Ty).

Ir(t) =

7 SYSTEM IMPLEMENTATION

We give more details on the implementation of some key com-
ponents of G-Miner. We also discuss how G-Miner handles fault
tolerance.

Task Priority Queue. To order inactive tasks that share common
remote candidates to be near each other, we apply locality-sensitive
hashing (LSH) [7, 9, 20] to generate a key for each task, based on
the IDs of its remote candidates (denoted as to_pull) before pushing
it into the task priority queue. This is motivated by the subgraph
shingles in [22, 36]. LSH reduces each high-dimension to_pull data
into a low k-dimension vector key and maps similar to_pulls to the
same key. The task priority queue orders tasks by their keys, so
that successively dequeued tasks share common to_pull data.

Tasks in the task priority queue are stored as a set of disjoint
blocks with fixed capacity. To bound memory consumption, we
only maintain the head block in memory but keep the remaining
ones on disk. Each block has an index to indicate the range of tasks
in it, which can be used for block loading into memory and new task
insertion. When all tasks in the first block have been consumed by
the task-pipeline, we load the next block into memory. This design
allows the disk I/O cost to be hidden in the higher computation
cost of subgraph-centric tasks.

RCYV Cache. Task processing in the task-pipeline can be viewed
as a task stream, and we need to guarantee that all the active tasks
can find their remote candidate vertices in RCV Cache. The tradi-
tional FIFO or LRU caching strategy may cause some vertices to be
replaced, in which case the missing vertices need to be re-pulled
and the referred tasks cannot be processed.

RCV Cache maintains a reference count r for each vertex in it,
which records the number of active tasks referring to the vertex.
When a task is dequeued from the task priority queue, we check if
each of its remote candidates is in RCV Cache. If yes, the reference
of the vertex increments by 1; otherwise, the vertex will be pulled
from a remote worker and inserted into RCV Cache with r = 1.
When this task completes a round of computation, the reference of
all its referred vertices in RCV Cache decrements by 1. Once the
reference of a vertex becomes 0, we move this vertex to the tail of
RCV Cache. We do not directly delete it, because even a vertex with
r = 0 could be referred again by a subsequent task. We call such
strategy as lazy model. Only when the cache is full, we replace the
zero-referred vertices by new coming ones. In a rare case, if there
is no vertex with r = 0 in RCV Cache, the candidate retriever will

EuroSys '18, April 23-26, 2018, Porto, Portugal

go to sleep until some tasks finish their computation and release
the referred vertices.

Fault tolerance. Similar to many distributed graph processing
systems [12, 18], G-Miner achieves fault tolerance by saving a snap-
shot periodically. For each checkpoint, the master instructs each
worker to dump the state of its partition to HDFS, where the state
includes the inactive tasks on disk, the active tasks and ready tasks
in the task-pipeline, RCV Cache and vertex table. Thanks to the
task model design, we do not need to checkpoint any message.

When a slave is dead, the fault recovery only needs to re-run
the tasks of the dead worker from the previous checkpoint, while
the other live workers continue their progress as tasks are indepen-
dent. The progress scheduler in the master applies task stealing to
dynamically re-distribute the workload of the dead worker to other
workers.

8 EXPERIMENTAL EVALUATION

We evaluate the performance of G-Miner on five graph mining
applications and compare the results with those of four existing
graph processing systems. We also report results on scalability and
optimization techniques.

8.1 Applications, Datasets, and Settings

We implemented five typical graph mining applications, on both
non-attributed graphs (i.e., each vertex only has an ID but no label/at-
tributes) and attributed graphs, to demonstrate the expressiveness
of G-Miner. The experimental results obtained also help validate
the overall performance of G-Miner for various categories of appli-
cations and datasets.

Triangle Counting (TC) takes a non-attributed graph as input and
uses only the 1-hop neighbors of each vertex in the computation [4,
26], which is a relatively light mining workload that vertex-centric
systems can handle [16, 47].

Maximum Clique Finding (MCF) is also applied on non-attributed
graphs and can be computed based on the 1-hop neighborhood,
but the workload is heavy [5]. We followed [5] to implement an
efficient algorithm with optimized pruning strategy on G-Miner.

Graph Matching (GM) is a fundamental operation for graph min-
ing and network analysis. Existing parallel algorithms [27, 30] usu-
ally first execute vertex-centric exploration and then perform sub-
graph joining on the results. GM takes an attributed graph as input
and has complex workload (vs. TC and MCF), which is hard to be
implemented using the API of other distributed graph systems.

Community Detection (CD) defines a set of vertices which share
common attributes and together form a dense subgraph as a commu-
nity [46]. CD aims to detect all such communities in an attributed
graph. CD has complex and heavy workload, and it is non-trivial
for any existing distributed graph system to solve this graph mining
problem. We adopted [33] to mine the dense subgraph topology and
guarantee the similarity of attributes in a community by a filtering
condition on newly added vertex candidates.

Graph Clustering (GC) is widely used for recommendation. We
followed the FocusCO algorithm [21] to group focused clusters
from an attributed graph based on user preference. The focused
clusters are communities that have similar attributes with the given

Hongzhi Chen et al.

Dataset Iv] |E| Max.Deg Avg.Deg |Attr|
Skitter 1,696,415 11,095,298 35,455 13.081
Orkut 3,072,441 117,184,899 33,313 76.281
BTC 164,732,473 772,822,094 1,637,619 4.69
Friendster 65,608,366 1,806,067,135 5,214 55.056 -
Tencent 1,944,589 50,133,369 456,864 55.562 122896
DBLP 1,805,882 8,439,133 2,134 9.346 1640

Table 2: Graph Datasets

users’ samples. We implemented it on G-Miner to show that it is
capable of handling such a convergent algorithm on large attributed
graphs, as FocusCO iteratively performs an expensive subgraph
dynamic update until convergence.

Datasets and Setting. We ran the experiments on a cluster of 15
nodes connected by Gigabit Ethernet, where each node has 48GB
RAM, two 2.0GHz Intel(R) Xeon(R) E5-2620 CPU (each CPU has 6
cores, and 12 virtual cores by hyper-threading) and a SATA disk
(6Gb/s, 10krpm, 64MB cache), running 64-bit CentOS 6.5 with Linux
kernel 2.6.32. We used HDFS (version 2.6.0).

We used six graphs as shown in Table 2. Skitter!, Orkut?, BTC3
and Friendster* are non-attributed graphs. Tencent is an attributed
graph provided by the KDD contest®, where each vertex records a
person with his/her interest tags (122, 896 in total), and each edge
shows the friendship between two users. DBLP® is a co-authorship
graph, where each vertex records the list of conferences or journals
the author published. The dataset involves 1, 640 conferences and
journals.

The graphs are various types of real-world networks and se-
mantic graphs that are popularly used by the KDD community for
evaluating graph mining algorithms. Some of the graphs are small
or medium-sized because the systems we compared with could not
handle the graph mining jobs (even on TC) for larger graphs.

8.2 Overall Performance Comparison

We first compare G-Miner with the four graph processing systems
we mentioned in §3.

All systems. We tested only TC and MCF on the four non-attributed
graphs, as most of the systems could not handle the other three
applications. Table 3 presents the results.

Arabesque, Giraph and GraphX either ran out of memory (OOM)
or over 24 hours for most of the cases. For the relatively small
graphs (i.e., Skitter and Orkut), their performance (even for TC) is
significantly worse than G-Miner. The main reasons for their poor
performance are because (1) these systems do not have a mechanism
to process a large number of subgraphs (e.g., pipelining them to
disk) and hence result in OOM, and (2) they all suffer from high
synchronization barrier costs. Thus, they cannot scale to handle
heavier workloads and larger datasets.

Compared with G-thinker, G-Miner is nearly twice as fast for the
largest graph, Friendster, but does not obtain an obvious advantage
for the smaller datasets. They both adopt a subgraph-centric model,

!http://konect.uni-koblenz.de/networks/as-skitter
Zhttp://konect.uni-koblenz.de/networks/orkut-links
Shttp://km.aifb.kit.edu/projects/btc-2009/
*http://snap.stanford.edu/data/com-Friendsterhtml
Shttps://www.kaggle.com/c/kddcup2012-trackl
Chttp://dblp.uni-trier.de/xml/

G-Miner: An Efficient Task-Oriented Graph Mining System

Dataset Arabesque Giraph GraphX G-thinker G-Miner
TC
Skitter 117.4 72.4 168.2 29.1 10.7
Orkut 693.4 2191.6 343.5 83.5 73.6
BTC X X X 300.3 282.4
Friendster X X X 2854.6 1482.3
MCF
Skitter - X 15129.3 136.2 34.4
Orkut - X - 189.2 97.3
BTC - X 8470.5 7503.5
Friendster - X 2955.7 1595.9

«_n, @,

Table 3: Elapsed running time in seconds (“-": >24 hours; “x
job failed due to OOM)

Dataset Skitter Orkut BTC Friendster
(Matched Pattern) — 3,995,063,219 101,282,186,486 7,384,754,036 425,807,851,924

Time (s)

G-Miner 27.2 100.6 47248.5 2417.2
G-thinker 122.1 619.1 - 5572.9
CPU Util.

G-Miner 52.75% 84.45% 76.25% 84.83%
G-thinker 29.85% 33.70% 11.90% 14.60%
Mem. (GB)

G-Miner 572 22.49 41.02 241.51
G-thinker 28.27 64.27 63.27 478.05
Net. (GB)

G-Miner 0.12 4.93 6.47 114.73
G-thinker 0.89 16.54 29.23 979.22

Table 4: Performance of G-Miner and G-thinker

and thus their performance demonstrates that such computational
models are suitable for graph mining jobs. We further analyze their
differences in the following experiment.

G-Miner vs. G-thinker. We study the detailed resource utiliza-
tion of G-Miner and G-thinker, thus verifying the effectiveness of
G-Miner’s task-pipeline design for graph mining. We ran GM, as
GM is more costly to process than TC and MCF so that we can show
more performance differences between G-Miner and G-thinker. We
ran GM with the pattern graph P given in Figure 1. We still used
the four non-attributed graphs but randomly assigned a label from
{a,b,c,d, e, f, g} to each vertex with a uniform distribution. We did
not use Tencent and DBLP, as G-thinker cannot efficiently handle
the high-dimensional attribute lists of these two graphs. Table 4
reports the elapsed running time, the average CPU utilization, the
peak aggregate memory usage, and the aggregate amount of net-
work communication of the cluster. We also list the total number
of matched patterns under the dataset names.

For this heavier workload, G-Miner is significantly faster than
G-thinker for all the graphs. This can be partially explained by G-
Miner’s much higher CPU utilization. Note that the CPU utilization
for Skitter is considerably low because it is the smallest graph and so
the workload is not heavy enough to make full use of the resource.
G-Miner also reduces the communication load and memory usage
by its design of process-level cache shared by all the computing
threads.

We further verify the effectiveness of G-Miner’s task-pipeline
design by plotting the CPU, network and disk I/O utilization rate
of both G-thinker and G-Miner for the largest graph Friendster.
As shown in Figure 5, although G-thinker also adopts a subgraph-
centric computational model, its system design does not allow it to
effectively overlap network communication with CPU computation,

EuroSys *18, April 23-26, 2018, Porto, Portugal

— CPU Network - - - - Disk
100 T T T T
g 80 N
§ 60 i
3
240 R
= | ”M’F"h 1
! P yrne j"vfmwlnu- o o
= 20 ‘ ; H Pl
ol A4 41 T

: il L
0 1,000 2,000 3,000 4,000 5000 6,000
Running Time(s)
Figure 5: CPU, network and disk I/0 utilization of G-thinker,
running GM on Friendster (best viewed in color)

——CPU Network - - - - Disk

100

Utilization(%)
[\~ = D Qo
3 5 3 3

Oboinal h L e
0 500 1,000 1,500 2,000 2,500

Running Time(s)

Figure 6: CPU, network and disk I/O utilization of G-Miner,
running GM on Friendster (best viewed in color)

and CPU cores are waiting for data from network in short intermit-
tent periods throughout the whole process. In contrast, Figure 6
shows that G-Miner allows all the CPU cores to be highly utilized
all the time, as its streamlined task-pipeline continues to feed the
computing threads with active tasks to be processed. The design
of the LSH-based task priority queue and RCV Cache in G-Miner
also effectively reduces the vertex pulling except at the early stage
when the cache is not yet filled.

G-Miner on heavy workloads. We next assess the performance
of G-Miner on CD and GC. These two applications are much more
costly to process than the other applications, and require the system
to deal with high-dimensional attribute lists. The purpose of this
set of experiments is to present the ability of G-Miner on running
convergent graph mining algorithms. None of the four systems
we compared with could handle such workloads nor express the
algorithms, and therefore there is no baseline for comparison. In
addition to Tencent and DBLP, we also used Skitter, Orkut and
Friendster by randomly assigning an attribute list” to each vertex.
But we excluded Tencent for GC because its graph format does not
fit the algorithm in [21] for GC.

Table 5 reports the elapsed running time and memory usage. Due
to the much more complicated candidate filtering and processing
of CD and GC, G-Miner used considerably more memory and time
to complete the jobs. However, even for these heavy, complicated
workloads on graphs with high-dimensional attribute lists, G-Miner
still recorded good performance numbers, especially considering

7Each attribute list is generated by a 5-dimension (i.e., [A-E]) uniform distribution
from [1-10]. Example attribute list: {A1, B5, C10, D6, E4}.

EuroSys '18, April 23-26, 2018, Porto, Portugal

Dataset Skitter Orkut Friendster DBLP Tencent
cD
Time (s) 34.2 169.5 22280.1 73.3 304.9
Mem. (GB) 9.83 98.19 367.89 10.88 38.22
GC
Time (s) 105.2 278.4 32476.3 94.8 ~
Mem. (GB) 11.83 120.08 436.64 6.61 ~

Table 5: Performance of G-Miner on CD and GC

that Arabesque, Giraph and GraphX actually obtained worse num-
bers even for the lightest workload, i.e., TC, as shown in Table 3.

In conclusion, this set of experiments verify both the expressive-
ness of G-Miner in implementing various graph mining applica-
tions and its efficiency in processing various workloads on various
datasets.

8.3 Scalability
We then evaluate the scalability of G-Miner.

The COST of scalability. McSherry et al. proposed COST [19] to
measure the cost of scalability using a distributed system. COST
is defined as the minimum number of cores a parallel/distributed
solution used to outperform an optimized single-threaded imple-
mentation. To measure the COST of G-Miner, we ran G-Miner on
a single node using 1 to 24 virtual cores, running TC and GM for
Skitter and Orkut, and compared with a single-threaded implemen-
tation. We did not use the larger datasets since we could not run
them for the single-threaded implementation on a single machine.

Figure 7 reports the result, where the horizontal dotted lines

plot the running time of a single-threaded implementation. The
COST of G-Miner is 3, 3, 2, 2, respectively, for TC on Skitter, TC on
Orkut, GM on Skitter, GM on Orkut. These numbers are much lower
than the systems measured in [19]. This means that the overhead
of parallel graph mining using G-Miner is quite low, thanks to its
streamlined task-pipeline design, as there is no synchronization
barrier existing in our system design. We remark that the low COST
is also because graph mining workloads are computation-intensive
and can thus be more benefited from parallel computation. The
scalability is also better for heavier workloads and larger datasets.
For example, in Figure 7, G-Miner has the best scalability for GM
on Orkut, for which it achieves 1.9, 3.8, 7.3, 9.1 and 12.8 speedups
at 2, 4, 8, 12 and 24 cores. The speedup is less significant when 24
cores are used because the resources have become sufficient for
these two smaller datasets.
Vertical and horizontal scalability. To assess the overall scalabil-
ity of G-Miner on large graphs, we ran MCF and GM on G-Miner for
Friendster. For vertical scalability, we used all 15 nodes, by varying
the number of cores in each node from 1 to 24 cores. For horizontal
scalability, we fixed 24 cores in each node and ran G-Miner on 10,
15, 20 nodes.

Figure 8 and Figure 9 show that G-Miner achieves good speedups
in most of the cases, especially for the heavier workload GM on
Friendster. G-Miner’s good scalability is due to two reasons: (1) our
task-pipeline design enables the computing threads to totally fo-
cus on the local task processing without being interrupted by the
network communication requests, which matches the computation-
intensive nature of graph mining workloads; (2) graph partitioning
and task stealing enable good load balancing among the nodes.

10

Hongzhi Chen et al.

—e— TC. Skitter —= TC_Orkut —&— GM_Skitter —4= GM_Orkut
----- TC_Skitter* =«=+ TC_Orkut* === GM_Skitter* —- = GM_Orkut*

103

w
=
102
10!
0
12 4 8 12 24
of Cores
Figure 7: The COST of G-Miner
Vertical 10* Vertical
3
2,800
2.5
‘;/ 2,400 % 2
£ g s
2,000
1
1600
0.5
= 0o 0
15 30 60 120 180 360 15 30 60 120 180 360
of Cores # of Cores
Figure 8: Vertical scalability of G-Miner
Horizontal Horizontal
2,700 3.600
2,400
2100 _ 3,000
£ 180 B
& &~ 2,400
1,500
1,200 1,800
= 0 = 0
10 15 20 10 15 20
of Nodes # of Nodes

Figure 9: Horizontal scalability of G-Miner

However, some loss on the scalability still can be observed, mainly
caused by the increase on the overhead of communication along
with the decrease in CPU utilization when more nodes (more suffi-
cient than needed) are involved.

In contrast, we also show the scalability of the four systems we
compared with in Figure 10 as a reference. The figure shows that
without a good system design and load balancing mechanism, there
is no guarantee on the system scalability. Note that we were only
able to measure the scalability for these systems on the smaller
datasets using TC for reasons already explained in §8.2.

8.4 Evaluation on Optimization Techniques

We now evaluate the effects of some key techniques used in G-
Miner. We emphasize that although the performance improvement
brought by each individual technique may not particularly impres-
sive, collaboratively (or cumulatively) they do optimize G-Miner
significantly.

BDG partitioning. We first show the effectiveness of our BDG
partitioning by comparing it with hash partitioning, which dis-
tributes each vertex to workers by hashing the vertex ID. Figure 11

G-Miner: An Efficient Task-Oriented Graph Mining System

[—e— Arabesque —#— Giraph —— GraphX —— G-thinker |

TC — Skitter

o \\/ .\-
" \J

150 -—
10 1 20

TC — Orkut

100

50
10%

10 15 20
of Nodes

Time(s)

Time(s)

of Nodes

Figure 10: Scalability of other systems

. 29 40.2
30l 201 o0l 1489 1 ol w02
£ : 28.92
S5 20p 1 100 R
I H
& 13.5 20| |
)
= 104 1 50} 4
0 T 0 T 0 T
Partition(s) Time(s) Mem.(GB) Network(GB)
600
539.2 2,240.1 456.79 600 | 59031
5 2,000 - 1 00l 09.01 |
T a00f 1
=
=S
I
2| vo00 1 200 g
S 2000 1
0 . 0 T 0 T
Partition(s) Time(s) Mem.(GB) Network(GB)
[W98 Hash-Partition 2] BDG-Partition |

Figure 11: BDG partitioning vs. Hash partitioning

reports the performance of G-Miner for MCF, using the two par-
titioning methods on Orkut and Friendster. Although our BDG
partitioning needs more processing time than hash partitioning,
the benefit brought by it still makes the total job execution time
considerably less than that of G-Miner using hash partitioning. In
addition, BDG partitioning also leads to improvements on network
communication and memory consumption, all of which come from
the block layout of BDG partitioning that preserves the data locality.
The block layout especially benefits the subgraph-centric nature of
many graph mining algorithms. In contrast, hash-based approach
destroys such data locality on the graph and leads to more memory
references and vertex pulling through the network.

Task priority queue. Figure 12 shows the impact of our LSH-based
task priority queue on the overall performance of G-Miner, where
En-LSH and Dis-LSH represent G-Miner by enabling and disabling
the LSH signatures on tasks. Without the LSH-based priority queue,
the execution time on the four test cases can be worsen for up to
40% (from 100.7s to 143.4s for GM on Orkut, from 1596.9s to 2162.3
for MCF on Friendster). This is because without ordering the tasks,
there are fewer common remote vertices to be pulled, which leads
to lower cache hit rate and higher communication costs.

Task stealing. Figure 13 presents the benefit obtained by task steal-
ing, which provides dynamic load balancing during job execution.
On the smaller dataset Orkut, G-Miner has significant improve-
ments, where the speedups are about 1.5 times. On the large dataset

11

EuroSys *18, April 23-26, 2018, Porto, Portugal

2,988.7

3,000

2,000

100 2.000

Time(s)

1,000

50 1,000

GM-Orkut GM-Friendster

MCF-Orkut MCF-Friendster

B En-LSH []Dis-LSH

Figure 12: Impact of LSH-based task priority queue

1,980.7

150

100.7
100

Time(s)

50

GM-Orkut GM-Friendster

MCF-Orkut

MCF-Friendster

‘-En-S(ealing I:H)L\‘-S(ealing‘

Figure 13: Impact of task stealing

Friendster, the relative speedups are not as significant since all the
workers are busy until towards the later stage of the computation.
However, task stealing can still directly save as much as 400 sec-
onds at the later stage only. As it is impossible to guarantee that
static load balancing will be always effective for all workloads and
datasets, we believe task stealing will be a useful technique when
we run into a skewed workload.

9 CONCLUSION

The complex algorithm logic and intensive computation of graph
mining workloads make them hard to be expressed and inefficient
to process in existing distributed graph processing systems. We
presented G-Miner, which provides an expressive API and achieves
outstanding performance with its novel task-pipeline that removes
the synchronization barrier and hides the overheads of network
and disk I/O. In addition, a set of optimization techniques are also
implemented to further improve the scalability, resource utilization
and load balancing of the system. As part of our future work, we
plan to address limitations of G-Miner such as improving its cost
model for task stealing, as we believe the effectiveness of task
stealing can be significantly improved with a more sophisticated
cost model. Other strategies such as recursive task splitting can
also lead to better solutions for load balancing on diverse graph
mining workloads. We will also address other weaknesses in the
system implementation such as the overheads of spawning all tasks
at the beginning and of maintaining the LSH priority queue and are
considering integrating G-Miner into our general-purpose system
Husky [44, 45] as we did for LoSHa [15].

Acknowledgments. We thank the reviewers and our shepherd
Fabian E. Bustamante for their valuable comments and feedback,
and Carter Cheng for proofreading the paper. This work was sup-
ported in part by Grants (CUHK 14206715 & 14222816) from the
Hong Kong RGC.

EuroSys '18, April 23-26, 2018, Porto, Portugal

REFERENCES

(1]

[2

—

(3]

(4]

(5]

6]
(71
(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23

[24]

[25]

[26

[27]

James Abello, Mauricio Resende, and Sandra Sudarsky. 2002. Massive quasi-clique
detection. LATIN 2002: Theoretical Informatics (2002), 598—612.

Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Ef-
ficient graphlet counting for large networks. In IEEE International Conference
onData Mining. 1-10.

Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on
hadoop. Proceedings of the Hadoop Summit. Santa Clara 11 (2011).

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient
semi-streaming algorithms for local triangle counting in massive graphs. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. 16-24.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo.
1999. The maximum clique problem. In Handbook of combinatorial optimization.
Springer, 1-74.

Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16, 9 (1973), 575-577.

Jeremy Buhler. 2001. Efficient large-scale sequence comparison by locality-
sensitive hashing. Bioinformatics 17, 5 (2001), 419-428.

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra: Differen-
tiated graph computation and partitioning on skewed graphs. In Proceedings of
the Tenth European Conference on Computer Systems. 1.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253-262.

Uriel Feige, David Peleg, and Guy Kortsarz. 2001. The dense k-subgraph problem.
Algorithmica 29, 3 (2001), 410-421.

Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3
(2010), 75-174.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDI, Vol. 12. 2.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework.. In OSDI, Vol. 14. 599-613.

Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation. 31-46.

Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, and
Ruihao Zhao. 2017. LoSHa: A General Framework for Scalable Locality Sensitive
Hashing. In SIGIR. 635-644.

Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-Scale Distributed
Graph Computing Systems: An Experimental Evaluation. PVLDB 8, 3 (2014),
281-292.

Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan
Kumar, and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a
Single Machine. In Proceedings of the Twelfth European Conference on Computer
Systems. 527-543.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135-146.

Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But
at what COST?. In HotOS.

Loic Paulevé, Hervé Jégou, and Laurent Amsaleg. 2010. Locality sensitive hash-
ing: A comparison of hash function types and querying mechanisms. Pattern
Recognition Letters 31, 11 (2010), 1348-1358.

Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sanchez, and Emmanuel Miiller.
2014. Focused clustering and outlier detection in large attributed graphs. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1346-1355.

Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale: neighborhood-
centric large-scale graph analytics in the cloud. The VLDB Journal 25, 2 (2016),
125-150.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472-488.

Semih Salihoglu and Jennifer Widom. 2013. Gps: A graph processing system.
In Proceedings of the 25th International Conference on Scientific and Statistical
Database Management. 22.

Satu Elisa Schaeffer. 2007. Graph clustering. Computer science review 1, 1 (2007),
27-64.

Thomas Schank and Dorothea Wagner. 2005. Finding, counting and listing all
triangles in large graphs, an experimental study. In International Workshop on
Experimental and Efficient Algorithms. 606—609.

Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel
subgraph listing in a large-scale graph. In Proceedings of the 2014 ACM SIGMOD

12

[29

(30]

[32

[33

(34]

[36

(37]

(38]

(39]

[41]
[42]

[43]

[44

[45

[47

(48]

[49

Hongzhi Chen et al.

International Conference on Management of Data. 625-636.

Arlei Silva, Wagner Meira Jr, and Mohammed J Zaki. 2012. Mining attribute-
structure correlated patterns in large attributed graphs. Proceedings of the VLDB
Endowment 5, 5 (2012), 466—477.

Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 1222-1230.

Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient subgraph matching on billion node graphs. Proceedings of the VLDB
Endowment 5, 9 (2012), 788-799.

Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a system for distributed
graph mining. In Proceedings of the 25th Symposium on Operating Systems Princi-
ples. 425-440.

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193-204.

Etsuji Tomita and Tomokazu Seki. 2003. An efficient branch-and-bound algorithm
for finding a maximum clique. In Discrete mathematics and theoretical computer
science. Springer, 278-289.

Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang
Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium on Cloud Computing. 408—
421.

Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. 2016.
Big Graph Analytics Systems. In Proceedings of the 2016 International Conference
on Management of Data. 2241-2243.

Da Yan, Hongzhi Chen, James Cheng, M. Tamer Ozsu, Qizhen Zhang, and John
C. S. Lui. 2017. G-thinker: Big Graph Mining Made Easier and Faster. CoRR
abs/1709.03110 (2017).

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981-1992.

Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2015. Effective techniques for
message reduction and load balancing in distributed graph computation. In
Proceedings of the 24th International Conference on World Wide Web. 1307-1317.
Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. Pregel
algorithms for graph connectivity problems with performance guarantees. Pro-
ceedings of the VLDB Endowment 7, 14 (2014), 1821-1832.

Da Yan, Yuzhen Huang, Miao Liu, Hongzhi Chen, James Cheng, Huanhuan Wu,
and Chengcui Zhang. 2018. GraphD: Distributed Vertex-Centric Graph Processing
Beyond the Memory Limit. IEEE Trans. Parallel Distrib. Syst. 29, 1 (2018), 99-114.
Da Yan, Yuanyuan Tian, and James Cheng. 2017. Systems for Big Graph Analytics.
Springer.

Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based substructure pattern
mining. In IEEE International Conference on Data Mining. 721-724.

Xifeng Yan and Jiawei Han. 2003. CloseGraph: mining closed frequent graph
patterns. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. 286—-295.

Fan Yang, Yuzhen Huang, Yunjian Zhao, Jinfeng Li, Guanxian Jiang, and James
Cheng. 2017. The Best of Both Worlds: Big Data Programming with Both Pro-
ductivity and Performance. In SIGMOD. 1619-1622.

Fan Yang, Jinfeng Li, and James Cheng. 2016. Husky: Towards a More Efficient
and Expressive Distributed Computing Framework. In PVLDB, Vol. 9. 420-431.
Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection
in networks with node attributes. In IEEE 13th international conference on Data
Mining. 1151-1156.

Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, and Pu-
rushotham Bangalore. 2017. Architectural implications on the performance and
cost of graph analytics systems. In Proceedings of the 2017 Symposium on Cloud
Computing. 40-51.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on
structural/attribute similarities. Proceedings of the VLDB Endowment 2, 1 (2009),
718-729.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning..
In USENIX Annual Technical Conference. 375-386.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 System Design
	4.1 General Graph Mining Schema
	4.2 Task Model
	4.3 Task-Pipeline

	5 System Architecture and API
	5.1 System Architecture and Components
	5.2 G-Miner API
	5.3 Programming With G-Miner

	6 Load Balancing
	6.1 BDG Partitioning
	6.2 Task Stealing

	7 System Implementation
	8 Experimental Evaluation
	8.1 Applications, Datasets, and Settings
	8.2 Overall Performance Comparison
	8.3 Scalability
	8.4 Evaluation on Optimization Techniques

	9 Conclusion
	References

