
1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

1

Scalable De Novo Genome Assembly Using a
Pregel-Like Graph-Parallel System

Guimu Guo, Hongzhi Chen, Da Yan, James Cheng, Jake Y. Chen, and Zechen Chong

Abstract—De novo genome assembly is the process of stitching short DNA sequences to generate longer DNA sequences, without
using any reference sequence for alignment. It enables high-throughput genome sequencing and thus accelerates the discovery of
new genomes. In this paper, we present a toolkit, called PPA-assembler, for de novo genome assembly in a distributed setting. The
operations in our toolkit provide strong performance guarantees, and can be assembled to implement various sequencing strategies.
PPA-assembler adopts the popular de Bruijn graph based approach for sequencing, and each operation is implemented as a program
in Google’s Pregel framework which can be easily deployed in a generic cluster. Experiments on large real and simulated datasets
demonstrate that PPA-assembler is much more efficient than the state-of-the-arts while providing comparable sequencing quality.
PPA-assembler has been open-sourced at https://github.com/yaobaiwei/PPA-Assembler.

Index Terms—Genome assembly, graph, distributed, vertex-centric, Pregel, DNA, read, contig, k-mer.

F

1 INTRODUCTION

M ODERN sequencing technologies generate a large number
of short DNA segments called reads, which are stitched

together to generate longer DNA sequences for finding new
genomes. Although millions of reads can be generated in a day
to allow high sequencing coverage, the assembly process is very
costly. Single-threaded assemblers [16], [31], [24], [33], [2], [15],
[34], [5], [7] often require a high-end server with terabytes of
RAM, and are not efficient enough. As a result, parallel short
read assembly has aroused a lot of attention recently thanks
to the advances in big data systems. Many parallel (and often,
distributed) assemblers have emerged, including ABySS [25],
Spaler [1], Ray [3] and SWAP-Assembler [18]. However, they
develop their respective distributed execution engines in an ad-hoc
manner, without analyzing the quality and time cost guarantees.

To overcome this weakness, we developed a toolkit called
PPA-assembler which implements the basic data structures and
operations in de novo genome assembly. PPA-assembler decouples
low-level execution (e.g., data distribution and communication)
from the high-level assembly logic, allowing both layers to be
independently optimized. The lower-level execution layer relies
on Google’s Pregel [17] framework which is optimized to deliver
high execution throughput in a distributed cluster, and which also
provides a user-friendly think-like-a-vertex programming interface
to the upper-level algorithmic layer for ease of implementing and
extending assembly strategies. Moreover, we have implemented
common operations in de novo genome assembly with strong
performance guarantees, and they can be assembled to implement

• Guimu Guo and Da Yan are with the Department of Computer Science, the
University of Alabama at Birmingham.
Jake Y. Chen is with the Informatics Institute in School of Medicine, the
University of Alabama at Birmingham.
Zechen Chong is with the Department of Genetics and Informatics Institute
at the University of Alabama at Birmingham.
E-mails: {guimuguo, yanda, jakechen}@uab.edu, zchong@uabmc.edu

• Hongzhi Chen and James Cheng are with the Chinese University of Hong
Kong.
E-mails: {hzchen, jcheng}@cse.cuhk.edu.hk

various sequencing strategies. Further extensions are also made
easy by the user-friendly Pregel model adopted.

We assume that readers are already familiar with the concepts
in de Bruijn graph (abbr. DGB) based de novo genome assembly,
such as reads, contigs, k-mers, reverse complement, directionality,
tips and bubbles. If they are new to you, please first refer to
Section III of our arXiv preprint [27] for a detailed tutorial.

Before presenting PPA-Assembler, we first list some examples
of weaknesses caused by ad-hoc designs in existing assemblers:

• As the Implementation section of [25] indicates, ABySS
needs to collect messages into larger 1KB packets for
transmission in batch, in order to hide the round-trip time
of individual messages; but this should be a detail in the
communication layer rather than in algorithm design. Such
communication details are automatically taken care of and
optimized by a Pregel-like system.

• ABySS [25] builds a de Bruijn graph (DBG) by letting
each k-mer send messages to its 8 possible neighbors
(with A/T/G/C prepended/appended) to establish edges;
but their method increases ambiguity and hence reduces
contig length. For example, an edge will be created be-
tween 2-mers “CA” (e.g., contributed by 3-mer “CAT”)
and “AA” (e.g., contributed by “GAA”) even though the
3-mer “CAA” may not exist in the DNA molecule.

• Spaler [1] iteratively breaks each unambiguous path in
a DBG by sampled vertices to form segments, and then
merges segments that meet at a sampled boundary vertex;
this process is repeated until unambiguous nodes in the
DBG account for more than 1/3 of all vertices in the
graph. However, this heuristic provides no guarantee of
path maximality, while as we shall see our PPA-assembler
guarantees path maximality while providing a strict perfor-
mance guarantee of logarithmic time complexity bound.

In fact, other than Spaler (built on top of Apache Spark), none
of the other existing assemblers is Hadoop-compatible1. Hadoop

1. Hadoop: http://hadoop.apache.org/

https://github.com/yaobaiwei/PPA-Assembler
http://hadoop.apache.org/

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2

compatibility is important for the existing Big Data ecosystem
since it allows different tools to interoperate for completing a
complex task. Genome assembly is especially so since it is just
one operation in a genomic workflow: the input readers may come
from a previous MapReduce job that prepares them with quality
control, and the generated contigs may be used by subsequent an-
alytic jobs running Spark MLlib. Different jobs usually exchange
their data using Hadoop Distributed File System (HDFS).

Although Spaler [1] is Hadoop-compatible, the operations
designed are rather ad hoc: they only demonstrate how genome
assembly operations can be mapped into Spark API, without any
formal analysis on the computation complexity. Moreover, most
operations in DBG-based sequencing are graph operations, for
which Spaler [1] uses the GraphX [9] (Spark’s graph API) that
are often over one order of magnitude slower than tailer-made
Pregel-like systems [30], [4].

Our PPA-Assembler is naturally Hadoop-compatible and can
be easily deployed in a generic cluster, since it is built on
top of Google’s Pregel framework, whose open-source Hadoop-
compatible implementations are abundant including Pregel+ [28],
Giraph [6], GraphX [9] and GPS [20]. PPA-assembler adopts the
popular de Bruijn graph (DBG) based approach for sequenc-
ing [19], and we built it on top of Pregel+2, our open-source
implementation of Google’s Pregel framework for big graph
processing. However, we remark that our proposed algorithms are
platform independent and can be implemented in any Pregel-like
systems, and Pregel+ is chosen due to its superior performance as
reported by [14] and its wide application [22], [8], [29], [28].

Since the assembly process also involves some non-graph op-
erations, such as to construct DBG from raw DNA reads, we also
extended Pregel+’s graph-parallel API with new functionalities,
including grouping and merging data by key, and in-memory data
conversion for seamless job concatenation. Each operation in PPA-
Assembler is a Pregel+ program that may either read its input
from HDFS, or directly obtain its input by converting the output
of another operation in memory. This allows data to be carried
over between different jobs without the need to being dumped to
HDFS for loading back, and it shares a similar idea as the Resilient
Distributed Dataset (RDD) of Spark [32].

The contributions of this work are summarized as follows:

• PPA-Assembler is built on top of Google’s Pregel frame-
work to be Hadoop-compatible, and avoids ad-hoc engine
designs that are exposed to various weaknesses.

• Key operations in de novo genome assembly are imple-
mented as Pregel programs, such as contig merging, tip
removing and bubble filtering. Each operation is imple-
mented as a Practical Pregel Algorithm (PPA) as defined
in [29], which runs for at most logarithmic number of
iterations (to DBG size), and each iteration has linear space
usage, computation cost and communication cost.

• The key operations can be assembled to implement various
assembly strategies, and the user-friendly Pregel API also
makes it easy to develop new operations to extend the
existing assembly workflow.

• Extensive experiments are conducted on real datasets from
different species with different read length and depth,
which shows that PPA-assembler is always much faster
than other assemblers while achieving comparable se-
quencing quality.

2. Pregel+: http://www.cse.cuhk.edu.hk/pregelplus/

The rest of this paper is organized as follows. Section 2 first
reports extensive experiments on performance comparison of PPA-
assembler with existing state-of-the-art assemblers to demonstrate
the superior performance of PPA-assembler. Section 3 reviews the
framework of Pregel, and the definition of PPA. Section 4 presents
the implementation of our various operations in PPA-assembler.
Finally, we report additional experimental results regarding PPA-
Assembler in Section 5, and conclude this paper in Section 6.

2 SYSTEM PERFORMANCE COMPARISON

As we have discussed, existing state-of-the-art parallel assemblers
often use ad-hoc designs for their execution engines, leading to in-
ferior performance and sometimes compromised sequencing qual-
ity. In contrast, built on top of Pregel with algorithmic performance
guarantees, PPA-assembler is consistently much faster and delivers
comparable sequencing quality as we shall show in this section,
even though we are not implementing new operations in DBG-
based genome assembly other than the standard ones (probably
with even less operations than some existing assemblers). We,
however, remark that PPA-assembler can be easily extended with
new operations to improve sequencing quality further.

PPA-assembler has been open-sourced at https://github.com/
yaobaiwei/PPA-Assembler, and this section reports its perfor-
mance while comparing with the state-of-the-art assemblers.

Systems. For the purpose of comparison, we consider the state-
of-the-art parallel assemblers ABySS [25] (version 2.1.5), Ray [3]
(version 2.3.1) and SWAP-Assembler [18] (version 2); Spaler is
not open-sourced and is thus not included in our comparison.
We also consider the state-of-the-art single-machine assemblers
Velvet [33] (version 1.2.10), SPAdes [2] (version 3.13.0) and
SOAPdenovo2 [15]. Besides Ray, the other five assemblers are
all DBG-based. In contrast, Ray uses subsequences called seeds
which are heuristically extended to generate contigs.

For our PPA-assembler, we adopt the simple workflow
1© 2© 3© 4© 5© 6© 2© 3© shown in Figure 17 (to be detailed in Sec-

tion 4), i.e., to grow contigs once further after error correction.
However, we remark that users may customize their own work-
flow or even change the existing operations (e.g., add coverage-
threshold pruning to bubble filtering) or add new operations
implemented in Pregel+’s API (e.g., branch splitting [1] for error
correction) to implement different assembly strategies.

Settings. All experiments were conducted on a cluster of 15 ma-
chines connected by Gigabit Ethernet, each with 24GB memory,
8TB disk space, and 6 CPU cores (Intel Xeon X5650 @ 2.67GHz)
with hyperthreading. We used k = 31 for defining k-mers as
is commonly used. For PPA-assembler, we adopt the following
parameters that are found to work well on various datasets; the
sequencing results are very stable near these parameter ranges:
(1) we filter any k-mers whose coverage by reads is below 5,
(2) we set the length threshold for tip removal as 80, (3) we set the
edit distance threshold for bubble filtering as 5 (i.e., two sequences
are considered for bubble filtering only if they are within distance
5). For the other systems, we adopt their default settings.

Datasets. In order to demonstrate that the performance advantage
of PPA-assembler is robust enough in different experimental con-
ditions, we use diverse datasets of different read depth, different
read length, and various species, as summarized in Table 1. All
the datasets are in FASTQ format.

http://www.cse.cuhk.edu.hk/pregelplus/
https://github.com/yaobaiwei/PPA-Assembler
https://github.com/yaobaiwei/PPA-Assembler

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

3

TABLE 1
Datasets (bp = base pairs)

Dataset Name # of Reads AVG Read Length Reference Sequence Length Read Coverage
Homo Sapiens Chromosome X (HCX-C6) 9,293,648 100 bp 158,270,121 6

Homo Sapiens Chromosome X (HCX-C10) 15,488,736 100 bp 158,270,121 10

Homo Sapiens Chromosome X (HCX-C20) 30,977,802 100 bp 158,270,121 20

Homo Sapiens Chromosome X (HCX-L50) 30,977,493 50 bp 158,270,121 10

Homo Sapiens Chromosome X (HCX-L100) 15,488,736 100 bp 158,270,121 10

Homo Sapiens Chromosome X (HCX-L150) 10,326,314 150 bp 158,270,121 10

Homo Sapiens Chromosome X (HCX-L200) 7,744,119 200 bp 158,270,121 10

Homo Sapiens Chromosome 2 (HC2) 8,525,938 100 bp 245,653,507 10

Human Chromosome 14 (HC14) 36,504,800 101 bp 107,349,540 42

Staphylococcus Aureus (SA) 1,294,104 101 bp 2,903,081 45

Rhodobacter Sphaeroides (RS) 2,050,868 101 bp 4,603,060 45

speciesA_200i (A200i) 22,499,730 100 bp N/A 40

PPA-Assembler Ray SWAP-Assembler
16 214.93 8865.79 938.85
32 115.34 4878.28 470.08
48 90.23 3733.76 346.96
64 81.94 3013.38 291.46

0
1
2
3
4
5
6
7
8
9

10

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 1. Running Time on HCX-C6 with Varying Number of Machines

PPA-Assembler Ray SWAP-Assembler
16 412.56 15694.10 2557.56
32 232.95 8434.25 1108.25
48 184.93 5982.17 813.51
64 172.47 5357.93 653.20

0
2
4
6
8

10
12
14
16
18

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 2. Running Time on HCX-C10 with Varying Number of Machines

Specifically, we generate reads from NCBI’s reference gene
sequences Homo Sapiens Chromosome X (HCX)3 and Homo
Sapiens Chromosome 2 (HC2)4, using the ART5 software [11].
We set reader coverage as 10 and the average read length as 100
base pairs (bp) when generating the data. The generated datasets
are HCX-C10 (or HCX-L100 which are the same) and HC2 in
Table 1.

In order to test the assemblers’ performance with different
read depth and read length, we further generate reads from HCX

3. http://www.ncbi.nlm.nih.gov/nuccore/NC 000023.11
4. https://www.ncbi.nlm.nih.gov/nuccore/NC 000002.12
5. http://www.niehs.nih.gov/research/resources/software/biostatistics/art/

PPA-Assembler Ray SWAP-Assembler
16 967.79 25000.957 4239.857
32 483.51 14325.309 1667.505
48 442.40 10116.388 1141.587
64 311.23 8276.484 952.039

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 3. Running Time on HCX-C20 with Varying Number of Machines

TABLE 2
Runtime of Single-Machine Assemblers with Varying Read Coverage

Velvet SPAdes SOAPdenovo2
HCX-C6 1,271.8 s 1,326.8 s 631.9 s
HCX-C10 2,391.7 s memory overflow 983.6 s
HCX-C20 15,482.7 s memory overflow memory overflow

reference gene sequence using read coverages 6 and 20, giving
datasets HCX-C6 and HCX-C20 in Table 1; and we generate reads
from HCX reference gene sequence using average read lengths
50 bp, 150 bp and 200 bp, giving datasets HCX-L50, HCX-L150
and HCX-L200 in Table 1.

To consider different species, we further incorporate the last
4 datasets shown in Table 1. The first 3 are downloaded from the
GAGE project [21]: Human Chromosome 14 (HC14) 6, Staphy-
lococcus Aureus (SA) 7, and Rhodobacter Sphaeroides (RS) 8.
The last dataset A200i is from the Assemblathon, which contains
synthetic Illumina reads for species ‘A’ 9.

2.1 Running Time and Scalability

Efficiency with Different Read Coverage. Figures 1, 2 and 3
show running time of the distributed assemblers on the HCX
datasets with read coverages 6, 10 and 20. For each assembler,

6. http://gage.cbcb.umd.edu/data/Hg chr14
7. http://gage.cbcb.umd.edu/data/Staphylococcus aureus/
8. http://gage.cbcb.umd.edu/data/Rhodobacter sphaeroides/
9. http://assemblathon.org/post/44431963352/assemblathon-1-data

http://www.ncbi.nlm.nih.gov/nuccore/NC_000023.11
https://www.ncbi.nlm.nih.gov/nuccore/NC_000002.12
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
http://gage.cbcb.umd.edu/data/Hg_chr14
http://gage.cbcb.umd.edu/data/Staphylococcus_aureus/
http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides/
http://assemblathon.org/post/44431963352/assemblathon-1-data

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

4

PPA-Assembler Ray SWAP-Assembler
16 213.04 19602.14 1418.98
32 130.24 11510.32 625.56
48 102.93 7872.04 498.48
64 79.67 6532.83 455.91

0

5

10

15

20

25
Ex

ec
ut

io
n

Ti
m

e
(x

 1
00

0
se

co
nd

s)
16 32
48 64

of machines

Fig. 4. Running Time on HCX-L50 with Varying Number of Machines

PPA-Assembler Ray SWAP-Assembler
16 412.56 15694.10 2557.56
32 232.95 8434.25 1108.25
48 184.93 5982.17 813.51
64 172.47 5357.93 653.20

0
2
4
6
8

10
12
14
16
18

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 5. Running Time on HCX-L100 with Varying Number of Machines

PPA-Assembler Ray SWAP-Assembler
16 718.82 5575.71 3829.62
32 313.71 3298.74 1423.57
48 246.57 2536.22 995.83
64 198.28 2167.22 876.10

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 6. Running Time on HCX-L150 with Varying Number of Machines

we show the end-to-end execution time of assembly when each
of our 15 machines runs 1, 2, 3 and 4 workers, respectively. We
can see that for all read-coverage scenarios, PPA-Assembler is
many times faster than SWAP-Assembler, while Ray is always
around one order of magnitude slower than SWAP-Assembler.
The performance of all systems improve with more workers and
hence more parallelism. Abyss runs out of memory and is thus not
reported.

Table 2 shows the running time of the single-machine assem-
blers, where we can see that they are much slower than distributed
assemblers and often run out of memory. This verifies the neces-
sity and performance advantage of distributed assemblers.

Efficiency with Different Read Length. Figures 4, 5, 6 and 7

PPA-Assembler Ray SWAP-Assembler
16 625.13 20998.89 3222.08
32 369.53 10707.20 1289.92
48 251.41 7686.07 967.56
64 215.04 6252.33 787.68

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 7. Running Time on HCX-L200 with Varying Number of Machines

PPA-Assembler Ray SWAP-Assembler
16 775.33 25758.16 4436.91
32 530.33 13940.41 1890.06
48 381.22 10523.63 1292.58
64 299.79 8147.76 1045.71

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 8. Running Time on HC2 with Varying Number of Machines

PPA-Assembler Ray SWAP-Assembler
16 451.0 14786.249 2119.818
32 253.5 8132.725 967.672
48 221.1559 5758.513 659.305
64 159.3763 4841.82 551.333

0
2
4
6
8

10
12
14
16

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 9. Running Time on HC14 with Varying Number of Machines

TABLE 3
Runtime of Single-Machine Assemblers with Varying Read Length

Velvet SPAdes SOAPdenovo2
HCX-L50 1,386.5 s memory overflow 425.1 s
HCX-L100 2,391.7 s memory overflow 983.6 s
HCX-L150 2,077.4 s memory overflow 482.8 s
HCX-L200 2,647.9 s memory overflow 600.1 s

show the running time of distributed assemblers on the HCX
datasets with average read lengths 50 bp, 100 bp, 150 bp and
200 bp. For each assembler, we show the end-to-end execution
time of assembly when each of our 15 machines runs 1, 2, 3 and 4
workers, respectively. We can see that for all read-length scenarios,
PPA-Assembler is many times faster than SWAP-Assembler, while

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

5

PPA-Assembler Abyss Ray SWAP-Assembler
16 26.49 129.22 457.57 70.62
32 23.21 134.09 331.67 34.87
48 21.09 139.02 284.32 24.18
64 19.77 145.32 258.16 20.20

0
50

100
150
200
250
300
350
400
450
500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
16 32
48 64

of machines

Fig. 10. Running Time on SA with Varying Number of Machines

PPA-Assembler Abyss Ray SWAP-Assembler
16 39.27 81.02 739.14 107.47
32 29.61 83.50 515.84 54.16
48 28.24 83.70 417.35 38.62
64 27.92 84.30 379.74 31.79

0
100

200

300

400
500

600

700

800

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

16 32
48 64

of machines

Fig. 11. Running Time on RS with Varying Number of Machines

Ray is always around one order of magnitude slower than SWAP-
Assembler. The performance of all systems improve with more
workers and hence more parallelism. Abyss runs out of memory
and is thus not reported.

Table 3 shows the running time of the single-machine assem-
blers, where we can see that they are much slower than distributed
assemblers and often run out of memory. This verifies the neces-
sity and performance advantage of distributed assemblers.

Efficiency with Different Species. Figures 8, 9, 10, 11 and 12
show the running time of distributed assemblers on the datasets
HC2, HC14, SA, RS and A200i. For each assembler, we show
the end-to-end execution time of assembly when each of our 15
machines runs 1, 2, 3 and 4 workers, respectively. We can see that
for all read-length scenarios, PPA-Assembler is many times faster
than SWAP-Assembler and Abyss, while Ray is always around
one order of magnitude slower than SWAP-Assembler.

Regarding the scalability with the number of workers, the
performance of PPA-assembler, SWAP-Assembler and Ray keeps
improving as the number of workers increases. In contrast, the
performance of ABySS is insensitive to the number of workers.
In fact, more workers may even lead to a longer assembly time.
Abyss runs out of memory on HC2, HC14 and A200i and is thus
not reported there.

Table 4 shows the running time of the single-machine assem-
blers, where we can see that they are much slower than distributed
assemblers and often run out of memory. This verifies the neces-
sity and performance advantage of distributed assemblers.

PPA-Assembler Ray SWAP-Assembler
16 953.94 19379.09 3868.66
32 420.75 11745.56 1470.28
48 292.12 8296.28 929.72
64 231.58 7019.35 765.49

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(x
 1

00
0

se
co

nd
s)

16 32
48 64

of machines

Fig. 12. Running Time on A200i with Varying Number of Machines

TABLE 4
Runtime of Single-Machine Assemblers with Different Species

Velvet SPAdes SOAPdenovo2
HC2 18,542.3 s 3,057.7 s memory overflow
HC14 1,896.0 s 1,377.0 s 809.6 s
Staphylococcus Aureus 34.8 s 68.4 s 53.7 s
Rhodobacter Sphaeroides 62.9 s 81.1 s 71.1 s
speciesA_200i 2,606.0 s 3239.1 s 843.4 s

TABLE 5
N50 of Different Datasets by Different Assemblers

PPA Abyss Ray SWAP Velvet SPAdes SOAP
HCX-C6 1129 - 949 1131 1151 1343 1147
HCX-C10 1286 - 1051 1254 1688 - 1686
HCX-C20 1250 - 2489 1281 1597 - -
HCX-L50 1265 - 1070 1438 963 - 966
HCX-L100 1286 - 1051 1254 1688 - 1686
HCX-L150 1026 - 2011 997 1834 - 1593
HCX-L200 1034 - 1562 971 1513 - 945

HC2 1221 - 1059 1116 1810 - -
HC14 1244 - 1857 1236 1438 - 1379
SA 2615 2391 1313 1959 1525 5637 1088
RS 1743 2088 1389 1741 903 3935 1072

speciesA 1162 3431 2219 1159 1535 13738 1481

2.2 Sequencing Quality

We now assess the sequencing quality of the assemblers. We
remark that, for PPA-assembler, we are just evaluating the adopted
workflow. We can easily configure PPA-assembler with other
assembly strategies that lead to a higher sequencing quality. Even
with the adopted workflow, PPA-assembler achieves comparable
sequencing quality, which we present next.

We used the popular assessment tool, QUAST [10], which
reports various quality metrics commonly used in genetic analysis.
These metrics include: (1) N50, which is defined as the length
for which the collection of all contigs of that length or longer
covers at least half an assembly; (2) N7, which is similarly defined
but with 75% instead of 50%; (3) # misassemblies, which is the
number of positions in contigs (breakpoints) that correspond to
misassemblies; (4) # misassembled contigs, which is the number
of contigs that contain misassembly events.

We present the N50 results in Table 5, where entries with
value “-” means that an assembler ran out of memory. We can
see that PPA-assembler achieves N50 comparable to Ray, SWAP-

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

6

TABLE 6
N75 of Different Datasets by Different Assemblers

PPA Abyss Ray SWAP Velvet SPAdes SOAP
HCX-C6 958 - 859 939 945 1032 946
HCX-C10 982 - 907 981 1168 - 1179
HCX-C20 988 - 1542 1005 1140 - -
HCX-L50 1000 - 914 1026 866 - 867
HCX-L100 982 - 907 981 1168 - 1179
HCX-L150 890 - 1319 881 1229 - 1144
HCX-L200 889 - 1132 870 1099 - 854

HC2 951 - 909 937 1225 - -
HC14 991 - 1276 983 1067 - 1042
SA 1615 1515 1019 1283 1123 3250 921
RS 1214 1397 1058 1198 841 2430 907

speciesA 952 2080 1479 947 1119 7847 1097

TABLE 7
Misassemblies of Different Datasets by Different Assemblers

PPA Abyss Ray SWAP Velvet SPAdes SOAP
HCX-C6 0 - 0 1 19 9683 82
HCX-C10 1 - 3 10 1 - 16
HCX-C20 38 - 11 3634 0 - -
HCX-L50 0 - 0 0 25 - 51
HCX-L100 1 - 3 10 1 - 16
HCX-L150 59 - 13 741 0 - 38
HCX-L200 41 - 19 372 0 - 2

HC2 2 - 3 15 0 - -
HC14 16 - 22 1305 1 - 2
SA 0 0 0 24 0 6 0
RS 1 4 3 42 0 45 1

speciesA no reference

Assembler and SOAPdenovo2, and is better on some datasets.
Abyss and SPAdes achieve much higher N50, but they do not
scale beyond small datasets. We also present the N75 results in
Table 6, in which we obtain similar observations.

We remark that a higher N50 could be achieved due to more
aggressive assembly strategies that may over-cleanse erroneous
reads. For this purpose, we also study the numbers of misas-
semblies and misassembled contigs, which are shown in Tables 7
and 8, respectively. Note that a misassembled contig may contain
multiple misassemblies. We can see that the much higher N50 of
SPAdes is obtained in the sacrifice of accuracy, as its number of
misassemblies is much higher than those of the other assemblers.
In contrast, while Abyss can only scale to the two small datasts
RA and RS, the accuracy looks good while achieving high N50.

Overall, PPA-assembler has a small number of misassemblies
comparable to the other systems, and is a few times faster than
even the second fastest assembler we tested, which verifies its
good performance by utilizing the Pregel framework with cost-
bounded Pregel algorithms. There is a great potential to extend
PPA-assembler beyond its current basic assembly strategies to
achieve a higher sequencing quality.

3 PRELMINARIES

Since PPA-assembler adopts the de Bruijn graph (DBG) based
approach for sequencing [19], we build it on top of a Pregel-like
distributed graph processing engine called Pregel+.

We next review the Pregel framework. For ease of presentation,
we first define our graph notations. Given a graph G = (V,E), we

TABLE 8
Misassembled Contigs of Different Datasets by Different Assemblers

PPA Abyss Ray SWAP Velvet SPAdes SOAP
HCX-C6 0 - 0 1 19 7794 81
HCX-C10 1 - 3 10 1 - 16
HCX-C20 38 - 11 3308 0 - -
HCX-L50 0 - 0 0 25 - 51
HCX-L100 1 - 3 10 1 - 16
HCX-L150 58 - 13 683 0 - 38
HCX-L200 41 - 19 352 0 - 2

HC2 2 - 3 15 0 - -
HC14 16 - 22 1206 1 - 2
SA 0 0 0 23 0 6 0
RS 1 4 3 41 0 43 1

speciesA no reference

denote the number of vertices |V | by n, and the number of edges
|E| by m. We also denote the diameter of G by δ .

If G is undirected, we denote the neighbors of a vertex v
by Γ(v) and the degree of v by d(v) = |Γ(v)|. If G is directed,
we denote the in-neighbors (resp. out-neighbors) of v by Γin(v)
(resp. Γout(v)) and the in-degree (resp. out-degree) of v by
din(v) = |Γin(v)| (resp. dout(v) = |Γout(v)|).

We denote the ID of v by id(v), and use v and id(v) inter-
changeably. Each vertex v also maintains a value denoted by a(v).

Pregel [17]. In Pregel, vertices are distributed to different ma-
chines in a cluster, where each vertex v is associated with its
adjacency list (e.g., Γ(v)) and its attribute a(v). A program in
Pregel implements a user-defined compute(.) function and pro-
ceeds in iterations (called supersteps). In each superstep, each
active vertex v calls compute(msgs), where msgs is the set of
incoming messages sent from other vertices in the previous super-
step. In v.compute(msgs), v may process msgs, update a(v), send
new messages to other vertices, and vote to halt (i.e., deactivate
itself). A halted vertex is reactivated if it receives a message in
a subsequent superstep. The program terminates when all vertices
are inactive and there is no pending message for the next superstep.
Finally, the results (such as a(v)) are dumped to HDFS.

Pregel numbers the supersteps, so that a user may access
the current superstep number in compute(.) to decide the proper
behavior. Pregel also supports aggregator, a mechanism for global
communication. Each vertex can provide a value to an aggregator
in compute(.) in a superstep. The system aggregates those values
and makes the aggregated result available to all vertices in the next
superstep.

Our Extensions to Pregel API. We find the following two
extensions to the basic Pregel API very useful in implementing
PPA-assembler. Firstly, for two consecutive jobs j and j′, we allow
j′ to directly obtain input from the output of j in memory. In
contrast, existing Pregel-like systems require j to first dump its
output to HDFS, which is then loaded again by j′.

Let the vertex class of job j (resp. j′) be Vj (resp. Vj′), then to
enable the direct memory input, users need to define a user-defined
function (UDF) convert(v) which indicates how to transform an
object v of class Vj (processed by j) into zero or more input
objects of class Vj′ (for job j′). After job j finishes, each machine
generates a set of objects of type Vj′ by calling convert(.) on its
assigned vertices of type Vj (which are then garbage-collected).
Since Pregel+ distributes vertices to machines by hashing vertex
ID, the generated objects of type Vj′ are then shuffled according

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

7

1 1 1 1 1NULL

1 2 2 2 2NULL

1 2 3 4 4NULL

1 2 3 4 5NULL

v1 v2 v4 v5v3

Fig. 13. Illustration of BPPA for List Ranking

to their vertex ID, before running job j′.
Secondly, the input data may not be in the format of one line

per vertex. For example, each line may correspond to one edge,
and hence the adjacency list of a vertex can be obtained from
multiple lines. To create vertices from such input data, we support
a mini-MapReduce procedure during graph loading.

Specifically, each line may generate zero or more key-value
pairs (using UDF map(.)) where the key is vertex ID, and these
key-value pairs are then shuffled according to vertex ID. After
each machine receives its assigned key-value pairs, these pairs
are sorted by key, so that all pairs with the same key form a
group. Finally, each group with key id(v) are processed (using
UDF reduce(.)) to create the input vertex object v.

Practical Pregel Algorithm (PPA). Our prior work [29] defined
a class of scalable Pregel algorithms called PPAs, and it designed
PPAs for many fundamental graph problems. These PPAs can be
used as building blocks to design PPAs for other sophisticated
graph problems, such as DBG-based sequencing studied in this
paper. Formally, a Pregel algorithm is called a balanced practical
Pregel algorithm (BPPA) if it satisfies the following constraints:

1) Linear space usage: each vertex v uses O(d(v)) (or
O(din(v)+dout(v)) if G is directed) space of storage.

2) Linear computation cost: the time complexity of the
compute(.) function for each vertex v is O(d(v)) (or
O(din(v)+dout(v)) if G is directed).

3) Linear communication cost: at each superstep, the size of
the messages sent/received by each vertex v is O(d(v))
(or O(din(v)+dout(v)) if G is directed).

4) At most logarithmic number of rounds: the algorithm
terminates after O(logn) supersteps.

Constraints 1-3 offers good load balancing and linear cost at
each superstep, while Constraint 4 controls the total running time.
Note that Constraint 4 includes those algorithms that run for a
constant number of supersteps.

For some problems, the per-vertex requirements of BPPA can
be too strict, and we can only achieve overall linear space usage,
computation and communication cost (still in O(logn) rounds).
We call a Pregel algorithm that satisfies these constraints simply
as a practical Pregel algorithm (PPA). Workload skewness of PPA
can be solved using the request-respond API of Pregel+ [28].

We now review two PPAs proposed in [29], both will be used
by PPA-assembler for finding contigs in Section 4.2.

BPPA for List Ranking. Consider a linked list L with n vertices,
where each vertex v keeps a value val(v) and its predecessor
pred(v). The vertex v at the head of L has pred(v) = null.

For each vertex v in L , let us define sum(v) to be the sum of
the values of all the vertices from v following the predecessor link

v

x

v

w

u

x

v

w

u

(b) Tree Hooking

(a) Init

w

u

x

u

y

(c) Shortcutting

x w

y

Fig. 14. Illustration of the Simplified S-V Algorithm

to the head. The list ranking problem computes sum(v) for every
vertex v in L , where the vertices are stored on HDFS in arbitrary
order.

The BPPA for list ranking works as follows. Each vertex
v initializes sum(v)← val(v). Then in each round, each vertex
v does the following in compute(.): if pred(v) 6= null, v sets
sum(v)← sum(v)+ sum(pred(v)) and pred(v)← pred(pred(v));
otherwise, v votes to halt. Note that to perform these updates, v
needs to first request its predecessor w = pred(v) for sum(w) and
pred(w), which takes another superstep. This process repeats until
pred(v) = null for every vertex v, at which point all vertices vote
to halt and we have sum(v) as desired.

Figure 13 illustrates how the algorithm works. Initially, objects
v1–v5 form a linked list with sum(vi) = val(vi) = 1 and pred(vi)
= vi−1. Let us now focus on v5. In Round 1, we have pred(v5) =
v4 and so we set sum(v5)← sum(v5)+ sum(v4) = 1+ 1 = 2 and
pred(v5)← pred(v4) = v3. One can verify the states of the other
vertices similarly. In Round 2, we have pred(v5) = v3 and so we
set sum(v5)← sum(v5) + sum(v3) = 2+ 2 = 4 and pred(v5)←
pred(v3) = v1. In Round 3, we have pred(v5) = v1 and so we
set sum(v5)← sum(v5) + sum(v1) = 4+ 1 = 5 and pred(v5)←
pred(v1)= null. The number of vertices whose values get summed
is doubled after each iteration, and thus the algorithm terminates
in logn rounds.

Simplified S-V Algorithm. The S-V algorithm was proposed in [29]
for computing the connected components (CCs) of a big undi-
rected graph G in O(logn) number of supersteps, by adapting
Shiloach-Vishkin’s PRAM algorithm [23] to run in Pregel.

In the S-V algorithm, each round of computation requires three
operations: tree hooking, star hooking, and shortcutting. However,
we find that star hooking is actually an artifact required by the
original Shiloach-Vishkin’s algorithm for correct termination in
the PRAM setting. Here, we propose a simplified version of the
S-V algorithm that does not require star hooking, which is more
efficient as the expensive checking of whether a vertex is in a star
(i.e., a tree with height 1) required by the original S-V algorithm
is eliminated.

Throughout this algorithm, vertices are organized by a forest
such that all vertices in a tree belong to the same CC. Each vertex
v maintains a link D[v] to its parent in the forest. We relax the tree
definition a bit here to allow the tree root w to have a self-loop
(i.e., D[w] = w).

At the beginning, each vertex v initializes D[v]← v, forming a
self loop as shown in Figure 14(a). Then, the algorithm proceeds
in rounds, and in each round, the parent links are updated in two
steps: (1) tree hooking (see Figure 14(b)): for each edge (u,v), if

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

8

5’ 3’A T T G C A A G T C

3’ 5’T A A C G T T C A G

Target Sequence
Strand 1

Strand 2

Clone 1

Clone 2

Clone 3

Clone 4

①
A T T G A A A G T C

A T T G C A A G T C

A T T G C T A G T C

A T T G C A A G T C

②

③ ④

⑤

⑥

Fig. 15. DNA Strands

3’ 5’Strand 2

5’ 3’Strand 1
AA AG GT

A A G T… …

T T C A… …
TT CT AC

k-mer

k-mer

Canonical k-mer AA AG AC
L L L H

H H H L

Fig. 16. Canonical k-mers & Edge Polarity

u’s parent w = D[u] is a tree root and D[v] < w, we hook w as a
child of v’s parent x = D[v] (i.e., we merge the tree rooted at w
into v’s tree); (2) shortcutting (see Figure 14(c)): for each vertex
v, we move it closer to the tree root by linking v to the parent of
v’s parent, i.e., D[D[v]]. Note that Step 2 has no impact on D[v] if
v is a root or a child of a root.

The algorithm repeats these two steps until no vertex v has
D[v] updated in a round (checked by using aggregator), by which
time every vertex is in a star, and each star corresponds to a CC.
Since D[v] monotonically decreases during the computation, at the
end D[v] equals the smallest vertex in v’s CC (which is also the
root of v’s star). In other words, all vertices with the same value
of D[v] constitute a CC.

The algorithm is a PPA since (1) each round can be formulated
in Pregel as a constant number of supersteps, and (2) shortcutting
allows the algorithm to run in O(logn) rounds. The proof of
Conclusion (2) is non-trivial and is only recently solved by strong
theoretical computer scientists Sixue Liu and Robert E. Tarjan in
their work of [13], who noticed a flaw in proving the logarithmic-
round bound of our prior SV algorithm proposed in [29]. We refer
interested readers to Section 5.3 of [13] for the proof.

4 THE DESIGN OF PPA-ASSEMBLER

This section presents the workflow of PPA-Assembler and the
Pregel algorithms of its operations. We assume that readers are
already familiar with the concepts in DGB-based de novo genome
assembly such as reads, contigs, k-mers, reverse complement, tips
and bubbles. If they are new to you, please first refer to Section III
of our arXiv preprint [27] for a detailed tutorial.

4.1 Directionality and Data Format

Directionality. Directionality arises since reads may be obtained
from both strands of the DNA molecule. As Figure 15 shows,
each strand has an end-to-end chemical orientation, and reads are
always obtained in the 5’-to-3’ direction. Specifically, strand 1
(resp. strand 2) is read from left to right (resp. from right to
left). Given a nucleotide x, we denote its complement by x. The
reverse complement of a DNA sequence s = x1x2 . . .x` is denoted
by rc(s) = x` x`−1 . . .x1 (or simply x`x`−1 . . .x1). For example, the
reverse complement of strand 1 in Figure 15 is “GACTTGCAAT”,
which is exactly strand 2 reading in the 5’-to-3’ direction.

Now consider the highlighted read “AAGT” in Figure 15
which is re-plotted on strand 1 in Figure 16. If we read the same
DNA segment on strand 2 in the 5’-to-3’ direction, we obtain
another read “ACTT”, which is exactly the reverse complement of
“AAGT”. Figure 16 also shows the k-mer vertices and (k+1)-mer
edges generated by these two reads (k = 2).

We would like a k-mer and its reverse complement to corre-
spond to a unique vertex in the DBG, so that reads from different
strands can be stitched to create longer contigs as long as the reads
share overlapping DNA segments. To achieve this goal, we define
the canonical k-mer of a k-mer s as the lexicographically smaller
sequence between s and rc(s), and use the canonical k-mer as a
vertex in the DBG. For example, the rightmost k-mers “GT” and
“AC” in Figure 16 both refer to the rightmost DBG vertex “AC”
of the chain in the middle of Figure 16.

Accordingly, now each DBG edge (u,v) needs to have a
polarity to indicate the direction of a (k+ 1)-mer that generates
this edge, i.e., u-to-v or v-to-u. Polarity is used to indicate the
stitching directions when constructing contigs. We use an example
to explain how edge polarity is determined. Consider the last
(k+ 1)-mer of read “AAGT” from strand 1 in Figure 16 (k = 2),
i.e., “AGT”, which creates an edge “AG”→“GT”. Edge source
“AG” is already canonical and thus we give it a label L, while
edge target “GT” needs to be converted to its reverse complement
“AC” to be a DBG vertex, in which case we give it a label H. The
edge direction is simply a concatenation of the source and target
labels, i.e., 〈L : H〉. We say that labels H and L are complementary,
and denote H = L and L = H. It is not difficult to see the following
property (e.g., from Figure 16).
Property 1. Edge (u,v) with polarity 〈X : Y 〉 is equivalent to edge

(v,u) with polarity 〈Y : X〉.

This property allows us to stitch k-mers generated from dif-
ferent strands. For example, consider (k+ 1)-mers “AAG” from
strand 1 and “ACT” from strand 2, which generates two edges

“AA”
〈L:L〉−−−→“AG” and “AC”

〈L:H〉−−−→“AG”. Although both edges are
incident to “AG”, the labels at the side of “AG” do not match.
Since the latter edge is equivalent to “AG”

〈L:H〉−−−→“AC”, we can

stitch the edges to obtain “AA”
〈L:L〉−−−→“AG”

〈L:H〉−−−→“AC” where both
edges agree on label L for “AG” and are in the same direction.

Memory-Efficient Scheme of Storing Vertices and Edges. We
design compact data structures for vertices and edges in our
vertex-centric programs to be memory-efficient, since genome
assembly has a very high memory demand [12]. To keep the
presentation succinct, we only highlight some key designs, and
the complete description on the data structure of vertices and edges
can be found in Section IV-A of our arXiv preprint [27].

Each vertex in a Pregel program has a unique ID for message
passing, and we use integer to specify vertex ID for efficiency
reasons. There are two kinds of vertices in PPA-Assembler, (1) k-
mer and (2) contig. We encode the sequence of a k-mer directly
into its integer ID, where each nucleotide is represented by two
bits: A (00), T (11), G (10), C (01). A 64-bit ID can keep up to 31
nucleotides, with the 2 most significant bits reserved. In contrast, a
contig can be an arbitrarily long sequence which has to be kept as
a vertex attribute. For vertex ID, the i-th worker machine assigns
its j-th generated contig a 64-bit ID that equals the 32-bit integer
representation of i (usually only using the least significant few
bits) concatenated with the 32-bit integer representation of j. The
2 most significant bits are used to indicate whether a vertex is a

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

9

Contig Labeling

DBG
Construction

data
operation

①

reads

k-mers

unambiguous
vertices

③

contigs
①

②

②

ambiguous
k-mers

Contig Merging

③
④

Bubble Filtering
④

⑤

Tip Removing

⑤

⑤

k-mers + contigs
⑤

⑥

Fig. 17. Workflow of PPA-Assembler Operations

k-mers, or a contig, or a dummy vertex NULL used to indicate that
a k-mer or a contig has no neighbor along one direction.

We also encode the neighbors of a k-mer vertex with a 32-bit
bitmap. For example, the 4-mer “CCGT” can have at most 4 in-
neighbors whose suffix matches its prefix “CCG”, i.e., “ACCG”,
“TCCG”, “GCCG” and “CCCG”. Similarly, there are at most 4
out-neighbors. Now taking the 4 possible edge polarity 〈L : L〉,
〈L : H〉, 〈H : L〉 and 〈H : H〉 into account, we obtain 4× (4+4) =
32 possible combinations, which we represent using the 32-bit
bitmap. A bit is 1 only if the corresponding neighbor exists.

A k-mer vertex tracks its contig neighbors differently from the
k-mer neighbors. Let a contig w be connected to two k-mers u
and v on its two ends, then u keeps v as its neighbor instead but
with the edge labeled by w’s vertex ID, so that u can request w’s
sequence using the ID. Please refer to Section IV-A of our arXiv
preprint [27] for details.

Vertex Types. First consider a k-mer vertex v, and it can be of
one of the following three types: (1) 〈1〉: such a vertex only has
one neighbor, and is thus a dead-end; (2) 〈1-1〉: such a vertex has
two neighbors, and when both edges agree on the polarity label
for v (either L or H) which can be enforced using Property 1, one
neighbor is an in-neighbor and the other is an out-neighbor; such
a vertex is unambiguous; (3) 〈m-n〉: such a vertex has at least two
neighbors, but it does not satisfy the requirement of 〈1-1〉; such
a vertex is ambiguous. Note that v must have a neighbor, since a
k-mer vertex is contributed by the prefix or suffix of a (k+1)-mer.

Since a contig is generated by merging unambiguous k-mers,
it can only be of type 〈1〉 or type 〈1-1〉. Here, we say that a contig
vertex is of type 〈1〉 iff at least one of its two neighbors is NULL,
i.e., the contig corresponds to a dangling path in DBG and is thus
a tip candidate (depending on the contig length).

4.2 The Workflow of Operations and Their Algorithms

PPA-assembler provides a library of operations for flexible
genome assembly in a distributed environment deployed with
Hadoop. Each operation is implemented as a PPA (described in
Section 3) and is thus scalable; it can either load data from HDFS,
or directly obtain input from another operation’s output in mem-
ory. Users may combine the provided operations to implement
various sequencing strategies, and they may even integrate new
operations or re-define existing operations (e.g., by changing the
criteria for judging tips and bubbles) using the convenient vertex-
centric API of Pregel+.

Overview. Figure 17 shows the data flow diagram of PPA-
assembler, which includes five operations: 1© DBG construction,
which constructs a DBG from the DNA reads, and outputs the k-
mer vertices of the DBG along with their adjacency lists; 2© contig
labeling, which divides the vertices into two sets (ambiguous
ones and unambiguous ones) and labels unambiguous vertices
by the contigs that they belong to; 3© contig merging, which
merges unambiguous vertices into contigs according to the labels;
4© bubble filtering, which filters any low-coverage contig that

shares both ends with another high-coverage contig that has a
similar sequence; 5© tip removing, which takes the ambiguous
k-mers and the contigs (after bubble filtering), and removes tips.

In fact, the output of tip removing can be fed to the “contig
labeling” operation again to grow longer contigs (see arrow 6©
in Figure 17), since the previous error correction operations may
have converted some ambiguous k-mer vertices into unambiguous
ones, and the operations 2©– 5© may loop as many times as needed
(though we typically just loop for one more round). At the first
round, the inputs to operations “contig labeling” and “contig
merging” must be k-mers, but starting from the second round,
the inputs may contain a mix of k-mers and contigs. For ease of
discussion, we focus on the first round when discussing operations
“contig labeling” and “contig merging”.

1© DBG Construction. This operation loads DNA reads from
HDFS, and creates a DBG from them through two mini-
MapReduce phases: (i) the first phase extracts (k+ 1)-mers from
reads, and (ii) the second phase constructs k-mer vertices and their
adjacency lists from the extracted (k+1)-mers, to form the DBG.

We first describe phase (i). In real DNA data, the sequence of
a read may contain element “N” besides “A”, “T”, “G”, “C”, and
such an element indicates that the nucleotide cannot be determined
due to noise in measurement. For this purpose, in map(.), a read
is first split into sequences by elements “N”, and each sequence is
parsed to obtain the (k+1)-mers using a sliding window of (k+1)
elements. The sequence of a (k + 1)-mer is directly encoded in
its 64-bit integer ID, which functions as the key for shuffling.
In each worker machine, if a (k+ 1)-mer is obtained for the first
time, the worker creates an (ID,count) pair for it where counter =
1; otherwise, the counter of the (k + 1)-mer is incremented by
1. After shuffling, for each (k + 1)-mer, all its counts (from all
workers) are input to reduce(.), which then sums these counts to
obtain the total count of the (k+1)-mer; reduce(.) only outputs the
(k+1)-mer as an (ID,count) pair, if the coverage count > θ where
θ is a user-defined threshold. We filter a low-coverage (k+1)-mer
since it is very likely to be contributed by erroneous readers.

In Phase (ii), each remaining (k+ 1)-mer is input to map(.),
which extracts two k-mers that correspond to its prefix and suffix.
In each worker, if an extracted k-mer is obtained for the first time,
the worker creates a k-mer vertex for it. A directed edge from the
prefix k-mer vertex to the suffix k-mer vertex is also added into
the adjacency lists of both k-mer vertices (recall that an adjacency
list is represented by a 32-bit bitmap), and edge count (which
equals the (k+ 1)-mer’s count) is also recorded or incremented,
using a variable-length integer. The k-mer vertices with partially
constructed adjacency lists are then shuffled by the 64-bit integer
ID. After shuffling, for each k-mer, its partial adjacency lists (from
all workers) are input to reduce(.), which combines them to obtain
the complete adjacency list (still represented in 32 bits), and which
sums the edge counts for each edge to obtain the edge’s coverage
(represented compactly using a variable-length integer).

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

10

CGGC ACGG CGTA<H:H>
GCCG CGTA

<H:L>
CCGT

GGCA <H:H> GTAC<L:L>
TGCC GTAC

Strand 1: … CTGCCGTACA …

T G C C G T A C

CTGC <L:H>
CTGC

TACA<L:L>
TACA

TACA<L:L>
TACA

CTGC
CTGC

<L:L>
bitmap: 11 1110 1001 01 00 01red blue

101coverage: 100 99 98 102 103

101coverage: 98 103

Fig. 18. Contig Format

CGGC ACGG CGTA
H H H L

GGCA
H H

GTAC
L L

CTGC L H TACA
L L

v1: 121 v2: 164 v3: 105 v4: 26 v5: 108 v6: 177 v7: 196
L L L HL L H HH L H H

(164, (164, (105, (26, (108, 177164 105) 26) 108) 177) 177)

(164, (164, (164, (105, (26, 177164 26) 108) 177) 177) 177)

(164, (164, (164, (164, (164, 177164 177) 177) 177) 177) 177)

Round 0

Round 1

Round 2

Fig. 19. Bidirectional List Ranking

2© Contig Labeling. Let us call a path that only contains vertices
of types 〈1〉 and 〈1-1〉 as an unambiguous path. The “contig label-
ing” operation marks all vertices on each maximal unambiguous
path with a unique label, so that they can be grouped to create
a contig later. The operation is executed right after “ 1© DBG
construction”, and the input vertices are all k-mers. It can also be
executed after “ 5© tip removing” to find longer contigs, in which
case some input vertices could already be contigs.

A vertex is at one end of a maximal unambiguous paths, if
its type is 〈1〉, or if its type is 〈1-1〉 and at least one neighbor
is of type 〈m-n〉 (i.e., ambiguous). The contig labeling operation
first recognizes contig-ends in two supersteps: (1) in superstep 1,
every vertex of type 〈m-n〉 broadcasts its ID to all its neighbors,
and then votes to halt; it will never be reactivated again as the
remaining computation only involves unambiguous vertices; (2) in
superstep 2, a vertex recognizes itself as a contig-end if it is of type
〈1〉, or if it is of type 〈1-1〉 and receives the ID of any ambiguous
vertex sent from superstep 1.

There are two methods to find all maximal unambiguous
paths (i.e., contigs) in O(logn) supersteps, both of which require
contig-end vertices to remove all their edges that connect to
ambiguous vertices, so that the DBG graph becomes a set of
isolated unambiguous paths, each corresponding to a contig. The
first method is to run the simplified S-V algorithm described in
Section 3, so that every vertex v is labeled with the smallest vertex
ID in its connected component (i.e., isolated unambiguous path
containing v). The second method is to use the idea of list ranking
described in Section 3 to find all unambiguous paths in O(log`max)
time, where `max is the length of the longest unambiguous path.

We now describe the second algorithm in more detail. We
illustrate this algorithm using the example of Figure 18, which
is re-plotted in Figure 19. Each edge is plotted along with its
equivalent edge in the other direction as determined by Property 1,
and each vertex is denoted by its integer ID (e.g., “GGCA” is
encoded with bitmap 10100100, which is 164).

As mentioned three paragraphs before, in superstep 2, a vertex
v that recognizes itself as a contig-end needs to remove edges that
connect with any ambiguous vertex. Instead of deleting such an
edge from v’s adjacency list, we replace it with a self-loop edge,
but we flip the second most significant bit of the edge’s target ID
(i.e., id(v)) to indicate that v is a contig-end (recall that the two
most significant bits are reserved). The flipped ID is denoted by
id(v). For example, in Figure 19, vertex v2 with ID 164 has two
neighbors v1 and v3, and it replaces the edge that connects with
the ambiguous neighbor v1 (who sent its ID to v2 in superstep 1)
by a self-loop edge to v2 itself, leading to a pair of neighbor IDs
(164,105).

In our list ranking approach, each unambiguous vertex main-
tains a pair of IDs, which is initialized as the pair of neighbor IDs
set by superstep 2, as illustrated by round 0 in Figure 19. Note
that a vertex v of type 〈1〉 also has a pair of IDs, since its NULL
neighbor is replaced with the self-loop edge (note that v is a contig-
end). We then perform list ranking in both sequencing directions
of a contig, and we call the process as bidirectional list ranking.
We pass messages in both directions rather than from one end
of a contig to the other end, since the two ends are symmetrically
recognized in superstep 2, and edge direction alone is not sufficient
to determine the sequencing direction as explained by Property 1.

In the ID pair maintained by a vertex v, each ID corresponds to
v’s predecessor in one sequencing direction, which is updated as
the predecessor’s predecessor after each round until it becomes
the flipped ID of a contig-end. We illustrate this process by
considering vertex v3 with ID 105 in Figure 19. In round 0, v3
sends its ID to its two predecessors 164 (v2) and 26 (v4) in one
superstep, to request for their predecessors. In the next superstep,
v4 receives v3’s ID 105, checks its own ID pair (105,108), and
responds the predecessor v5 = 108 back to v3 since the other value
105 in the ID pair is the received requester’s ID.

Similarly, v3 will also receive 164 from v2. It then replaces its
current ID pair with the two received predecessor IDs (164,108).

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

11

In round 1, v3 sends requests to v5 = 108 only since it has al-
ready reached the contig-end 164 in the other direction. It receives
v5’s predecessor 177, and updates its ID pair as (164,177). Since
it reaches both contig-ends, it votes to halt and will not participate
in any future computation. In fact, all vertices reach both contig
ends before round 2 and vote to halt, and thus the computation
stops in 2 rounds. It is not difficult to see that the number of hops
between a vertex and its precedessors gets doubled by each round,
and thus the algorithm stops in O(log`max) supersteps and is thus
a BPPA. When the computation terminates, the ID pair of each
vertex contains the flipped IDs of its two contig-ends. Obviously,
each ID pair uniquely defines a contig, and we use the smaller one
of the pair of contig-end vertex IDs as the contig-label.

Bidirectional list ranking alone is not sufficient if the DBG
contains a cycle of vertices of type 〈1-1〉 (a special contig if
large enough), since these vertices will never reach an end; in
contrast, for a normal case each round will have some vertices
vote to halt due to reaching both contig-ends. Based on these
observations, if the number of active vertices is larger than 0
but does not decrease after a round, our algorithm turns to run
our simplified S-V algorithm on the remaining active vertices, so
that each vertex in a cycle obtains the smallest ID in the cycle.
Bidirectional list ranking is preferred since each round only takes
2 supersteps, much smaller than that required by a round of the
S-V algorithm. On the other hand, running the S-V algorithm over
vertices in cycles at last is fast, since there are very few active
vertices remaining.

To summarize, if only the simplified S-V algorithm is adopted,
then each vertex obtains its contig-label as the smallest vertex ID
in its contig; if bidirectional list ranking is adopted, each vertex in
a non-cycle contig obtains its contig-label as the smaller contig-
end vertex’s ID, while each vertex in a cycled contig obtains its
contig-label as the smallest vertex ID in the cycle; it is also a must
to ensure the correctness of the algorithm.

3© Contig Merging. This operation takes the labeled unambigu-
ous vertices as the input, and uses a mini-MapReduce procedure
to group the vertices by their labels. All vertices with the same
contig-label are input to reduce(.), which then merges the se-
quences of these vertices to obtain the contig.

We now describe the merging process in reduce(.). Firstly, a
hash table is constructed over all the vertices in the contig-group,
so that we can lookup a vertex object (storing information like
its sequence and neighbors) using its 64-bit integer ID. We also
identify a contig-end vertex, which contains a neighbor not in the
group (either NULL or of type 〈m-n〉), to start the stitching with.
If such a vertex cannot be found, the contig is cycled and we start
stitching from an arbitrary vertex.

We then order all the vertices from the starting vertex (and
meanwhile, set the edge directions properly), so that they can be
stitched in order. Let us denote the starting vertex by v1, and denote
the subsequent vertices after ordering by v2,v3, . . . ,vk. Initially, we
find a neighbor of v1 that is not its self-loop, which is found as
v2. We let v1’s out-neighbor be v2, and let the other neighbor of
v1 be its in-neighbor. Edge directions and polarities are properly
adjusted using Property 1 if they are originally inconsistent. We
then obtain v2 from the hash table for processing, using its ID
stored in v1’s adjacency list. Generally, for each vertex vi (i > 1),
we let vi−1 be its in-neighbor, and let the other neighbor (which is
found as vi+1) be the out-neighbor; then vi+1 can be obtained from
the hash table (using its ID in vi’s adjacency list) to continue the

ordering process. The ordering finishes when all k vertices have
been processed.

If vk is of type 〈1〉, we exit reduce(.) if the aggregated contig
length is not above the user-specified tip-length threshold (since
the contig is a tip). In all other cases, we stitch the vertices in
the order of v1,v2, . . . ,vk to construct the contig’s sequence. We
also set the contig’s coverage as the minimum edge coverage seen
during the concatenation, and set the contig’s two neighbors with
v1’s in-neighbor and vk’s out-neighbor.

4© Bubble Filtering. The contigs previously constructed may then
enter the “bubble filtering” operation for further filtering though a
mini-MapReduce procedure. In map(.), each contig with neighbors
nb1 and nb2 (nb1 < nb2), both of type 〈m-n〉, associates itself with
a key (nb1,nb2) for shuffling. As a result, all contigs that share two
neighboring ambiguous vertices (nb1,nb2) are input to reduce(.),
and let us denote them by c1,c2, . . . ,ck. We then process each
contig ci as follows: if ci is not already pruned, we check whether
any contig c j (j > i) can prune ci. Specifically, we first compute the
edit distance between ci’s sequence and c j’s sequence or its reverse
complement (depending on whether ci and c j’s edge directions are
consistent, i.e., nb1-to-nb2 or nb2-to-nb1). If the distance is smaller
than a user-defined threshold, we mark ci (resp. c j) as pruned if
its coverage is smaller than c j (resp. ci).

5© Tip Removing. This operation takes both ambiguous k-mers
and the merged contigs as input. We first need to update the
adjacency lists of the ambiguous k-mers, to link them to the
newly merged contigs. In fact, since some contigs may have
been removed due to bubble filtering, some ambiguous k-mers
may have changed their types from 〈m-n〉 to 〈1-1〉 or 〈1〉. Recall
from Section 4.1 that a k-mer vertex stores its contig neigbhor
by maintaining (1) the contig vertex’s ID (e.g., for requesting
its sequence), (2) the vertex that the contig connects to on the
other end, and (3) other contig information like its length. We set
the adjacency lists of the k-mer vertices in two supersteps: (i) in
superstep 1, each contig vertex sends its information mentioned
above to both neighbors (if not NULL); then (ii) in superstep 2,
each k-mer vertex collects these information into its adjacency list.

Since only path length is concerned during tip removing, we
only need to check the k-mer vertices since each k-mer vertex
u maintains the sequence length of each contig neighbor c that
connects to v. However, when deleting the edge (u,v) (due to
being part of a tip), a message should be sent to the contig vertex
c (using c’s ID) to tell it to delete itself, which we take for granted
and will not emphasize in the subsequent algorithm description.

Note that the removal of tips may cause some vertices of type
〈m-n〉 to change their type to 〈1〉, hence generating new tips. We
thus run vertex-centric tip removing for multiple phases, until no
new 〈1〉-typed vertex is generated at the end of a phase.

In a phase, we start message passing from vertices of type
〈1〉, where a message records (1) the sender’s ID, (2) cumulative
sequence length, and (3) a type REQUEST. A 〈1〉-typed vertex
u initializes the cumulative sequence length as k (i.e., u’s k-
mer sequence length). When a vertex u of type 〈1-1〉 receives
a REQUEST message, it relays the message to the other neighbor
v (which is not the sender) by adding the cumulative sequence
length by 1 if u is a k-mer vertex, and by 1+ len(c)− (k− 1)
if u is a contig c, where 1 is contributed by u, len(c) is the
contig length, and we subtract (k− 1) from the length to avoid
double-counting the overlapping nucleotides already counted in
the cumulative sequence.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

12

TABLE 9
Bidirectional LR v.s. S-V for Labeling Unambiguous k-mers

Datasets # of Supersteps # of Messages Runtime (s)
LR SV LR SV LR SV

HCX-C6 50 86 573,558,630 2,524,607,382 35.97 131.71
HCX-C10 / L100 43 86 1,788,475,951 6,380,722,570 104.06 346.32

HCX-C20 28 93 4,065,836,071 10,384,170,426 271.43 635.03
HCX-L50 50 79 587,710,981 3,064,451,778 39.92 165.90

HCX-L150 36 93 3,189,223,427 9,203,242,886 216.92 547.78
HCX-L200 43 93 2,837,913,137 8,477,515,372 187.86 514.11

HC2 50 79 2,920,014,695 9,435,316,157 200.39 591.73
HC14 50 93 2,338,866,944 6,147,451,231 151.07 360.25

RS 22 86 136,360,533 323,144,002 7.15 15.12
SA 43 93 100,617,701 220,871,422 5.30 10.17

A200i 43 114 3,332,818,876 11,309,323,655 223.07 670.95

TABLE 10
Bidirectional LR v.s. S-V for Labeling Contigs

Datasets # of Supersteps # of Messages Runtime (s)
LR SV LR SV LR SV

HCX-C6 22 44 860,786 3,863,872 0.35 0.48
HCX-C10 / L100 22 37 1,810,183 6,384,157 0.46 0.61

HCX-C20 15 37 3,357,356 4,916,223 0.55 0.63
HCX-L50 22 51 971,506 5,205,241 0.35 0.59

HCX-L150 22 37 2,617,918 5,134,871 0.54 0.63
HCX-L200 22 37 2,385,926 5,234,668 0.49 0.58

HC2 22 44 2,372,566 8,958,344 0.53 0.85
HC14 29 44 1,650,716 4,648,384 0.48 0.53

RS 8 51 82,072 436,652 0.18 0.34
SA 15 37 17,286 58,827 0.20 0.24

A200i 22 37 1,563,546 8,768,339 0.41 0.68

The REQUEST message ends at an 〈m-n〉-typed or 〈1〉-typed
vertex v, which checks whether the cumulative sequence length is
not larger than the tip-length threshold. If so, v sends a message of
type DELETE to the sender to delete the vertices on the dangling
path. The DELETE message is relayed by 〈1-1〉-typed vertices
back till reaching the 〈1〉-typed vertex that initiates the REQUEST
message, and vertex and contig deletions are triggered along the
backward message propagation.

A special case is when a tip has two 〈1〉-typed ends. Since both
vertices at the ends initiate a REQUEST message sent towards each
other, when the two DELETE messages are sent back, they meet
in the middle of the tip (rather than reach the other 〈1〉-typed end).

An 〈m-n〉-typed vertex v also deletes its edge to the neighbor
that it sends a DELETE message, and if its type becomes 〈1〉, it
keeps itself activated to initiate the REQUEST message in the next
phase.

5 ADDITIONAL EXPERIMENTS

Recall from Section 3 and Section 4.2 that there are two ap-
proaches for contig labeling (see Step 2© in Figure 17), bidirec-
tional list ranking and simplified S-V. As we mentioned, while
both algorithms are PPAs that run for O(logn) rounds (and
hence supersteps), each round of S-V require a larger number of
supersteps than a round in list ranking, and thus list ranking (LR)
is expected to be much faster.

Recall that we run PPA-assembler with the simple workflow
of 1© 2© 3© 4© 5© 6© 2© 3© in Figure 17, and “ 2© contig labeling” is

performed twice: once for labeling unambiguous k-mers, and once
for labeling contigs (to grow longer ones).

We have seen in Section 2 that PPA-assembler is from a
few times to tens of times faster than existing state-of-the-art
assemblers. There, we used the bidirectional list ranking algorithm
for contig labeling (see Step 3© in Figure 17). This section justifies
our choice by comparing it with if we adopt the (simplified) S-V
algorithm for contig labeling.

Table 9 and Table 10 show the comparison of LR and S-V
for labeling k-mers and labeling contigs, respectively, on all the
datasets. There, we report (1) the number of supersteps, (2) the
number of messages, and (3) the running time.

We can see that LR runs for much fewer supersteps, sends
much fewer messages, and is much faster than S-V. The message
number and running time in Table 10 are three orders of magnitude
less than those in Table 9, since the vertex number is significantly
reduced after we merge unambiguous k-mers into contigs. For
example, the DBG of the HC-2 dataset has 46.97 M vertices,
which is reduced to 1.0 M vertices after merging unambiguous k-
mers into contigs, and further to 68,264 vertices after these contigs
are merged after error correction.

6 CONCLUSION

We presented a scalable and flexible de novo genome assembler,
PPA-assembler, built on a popular big data framework and pro-
vides strict performance guarantee. PPA-assembler is much faster
than existing state-of-the-art distributed assemblers, and achieves
comparable sequencing quality.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

13

For future work, it is promising to implement more assem-
bly strategies in PPA-assembler, such as those in Abyss whose
scalability is the worst but has shown much higher sequencing
quality than the others in our system comparison experiments.
As [26] indicates there are till many challenges in de novo genome
assemblies such as sequencing error correction and repetitive
structures in the genome, and novel methods are to be developed to
address them and it is interesting to see if they can be implemented
to extend PPA-asssembler.

It is also interesting to further consider paired-end information
and to merge contigs into longer ones using scaffolding algo-
rithms. However, we remark that our merging of k-mers into
contigs is the bottleneck of scalability, and the data volume of
the obtained contigs tends to be much smaller and can easily fit
into a traditional scaffolding program.

REFERENCES

[1] A. Abu-Doleh and U. V. Catalyurek. Spaler: Spark and graphx based
de novo genome assembler. In Big Data (Big Data), 2015 IEEE
International Conference on, pages 1013–1018. IEEE, 2015.

[2] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.
Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al.
Spades: a new genome assembly algorithm and its applications to single-
cell sequencing. Journal of computational biology, 19(5):455–477, 2012.

[3] S. Boisvert, F. Laviolette, and J. Corbeil. Ray: simultaneous assembly of
reads from a mix of high-throughput sequencing technologies. Journal
of Computational Biology, 17(11):1519–1533, 2010.

[4] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(ger)
graph analytics on a dataflow engine. PVLDB, 8(2):161–172, 2014.

[5] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S.
Rokhsar. Meraculous: de novo genome assembly with short paired-end
reads. PloS one, 6(8):e23501, 2011.

[6] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrish-
nan. One trillion edges: Graph processing at facebook-scale. PVLDB,
8(12):1804–1815, 2015.

[7] T.-C. Chu, C.-H. Lu, T. Liu, G. C. Lee, W.-H. Li, and A. C.-C. Shih.
Assembler for de novo assembly of large genomes. Proceedings of the
National Academy of Sciences, 110(36):E3417–E3424, 2013.

[8] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang. Computing connected
components with linear communication cost in pregel-like systems. In
ICDE, pages 85–96, 2016.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In OSDI, pages 599–613, 2014.

[10] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. Quast: quality
assessment tool for genome assemblies. Bioinformatics, 29(8):1072–
1075, 2013.

[11] W. Huang, L. Li, J. R. Myers, and G. T. Marth. Art: a next-generation
sequencing read simulator. Bioinformatics, 28(4):593–594, 2012.

[12] D. Kleftogiannis, P. Kalnis, and V. B. Bajic. Comparing memory-efficient
genome assemblers on stand-alone and cloud infrastructures. PloS one,
8(9):e75505, 2013.

[13] S. Liu and R. E. Tarjan. Simple concurrent labeling algorithms for
connected components. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages
3:1–3:20, 2019.

[14] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph
computing systems: An experimental evaluation. PVLDB, 8(3), 2015.

[15] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan,
Y. Liu, et al. Soapdenovo2: an empirically improved memory-efficient
short-read de novo assembler. Gigascience, 1(1):18, 2012.

[16] I. MacCallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter,
A. Gnirke, J. Malek, K. McKernan, S. Ranade, T. P. Shea, et al. Allpaths
2: small genomes assembled accurately and with high continuity from
short paired reads. Genome biology, 10(10):R103, 2009.

[17] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD Conference, pages 135–146, 2010.

[18] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji. Swap-assembler:
scalable and efficient genome assembly towards thousands of cores. BMC
bioinformatics, 15(Suppl 9):S2, 2014.

[19] P. A. Pevzner, H. Tang, and M. S. Waterman. An eulerian path approach
to dna fragment assembly. Proceedings of the National Academy of
Sciences, 98(17):9748–9753, 2001.

[20] S. Salihoglu and J. Widom. Gps: a graph processing system. In SSDBM,
page 22, 2013.

[21] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,
T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, et al. Gage:
A critical evaluation of genome assemblies and assembly algorithms.
Genome research, 22(3):557–567, 2012.

[22] S. Sato. On implementing the push-relabel algorithm on top of pregel.
New Generation Comput., 36(4):419–449, 2018.

[23] Y. Shiloach and U. Vishkin. An o (logn) parallel connectivity algorithm.
Journal of Algorithms, 3(1):57–67, 1982.

[24] J. T. Simpson and R. Durbin. Efficient de novo assembly of large
genomes using compressed data structures. Genome research, 22(3):549–
556, 2012.

[25] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones,
and I. Birol. Abyss: a parallel assembler for short read sequence data.
Genome research, 19(6):1117–1123, 2009.

[26] J.-i. Sohn and J.-W. Nam. The present and future of de novo whole-
genome assembly. Briefings in bioinformatics, 19(1):23–40, 2016.

[27] D. Yan, H. Chen, J. Cheng, Z. Cai, and B. Shao. Scalable de novo
genome assembly using pregel. CoRR, abs/1801.04453, 2018.

[28] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for message
reduction and load balancing in distributed graph computation. In WWW,
pages 1307–1317, 2015.

[29] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algorithms
for graph connectivity problems with performance guarantees. PVLDB,
7(14):1821–1832, 2014.

[30] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB, 9(5):420–431,
2016.

[31] C. Ye, Z. S. Ma, C. H. Cannon, M. Pop, and W. Y. Douglas. Exploiting
sparseness in de novo genome assembly. In BMC bioinformatics,
volume 13, page S1. BioMed Central, 2012.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In NSDI, pages
15–28, 2012.

[33] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short
read assembly using de bruijn graphs. Genome research, 18(5):821–829,
2008.

[34] A. V. Zimin, G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg, and J. A.
Yorke. The masurca genome assembler. Bioinformatics, 29(21):2669–
2677, 2013.

Guimu Guo is a PhD student at the Department
of Computer Science, the University of Alabama
at Birmingham. His research interests include
distributed computing systems, data science and
bioinformatics.

Hongzhi Chen is a PhD student in the Depart-
ment of Computer Science and Engineering at
the Chinese University of Hong Kong. He is in-
terested in distributed computing systems and
large-scale graph processing.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2920912, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

14

Da Yan is currently an Assistant Professor at
the Department of Computer Science, the Uni-
versity of Alabama at Birmingham. He is the
sole winner of Hong Kong 2015 Young Scien-
tist Award in Physical/Mathematical Science. Dr.
Yan regularly publishes in 1st-tier conferences
and journals like SIGMOD, PVLDB, SIGKDD,
ICDE, WWW, TKDE, TPDS, SoCC, EuroSys,
PPoPP, etc. He also regularly serves as the re-
viewers of top journals including TODS, VLDBJ,
TKDE, TPDS, etc., and serves in the program

committees of top conferences such as SIGMOD 2019 and 2020,
PVLDB 2018, IJCAI 2017, ICPP 2018, etc. Dr. Yan is the leading
program co-chair of the BIOKDD 2018 and 2019 workshops held in
conjunction with SIGKDD, and a guest editor of ACM/IEEE TCBB.

James Cheng is an Associate Professor with
the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong.
His research focuses on big data infrastructures,
distributed computing systems, and large-scale
network analysis.

Jake Y. Chen is a Professor of Genetics, Com-
puter Science, and Biomedical Engineering at
the University of Alabama at Birmingham (UAB).
He is also the Chief Bioinformatics Officer of
UAB?s Informatics Institute and Head of the In-
formatics Section of the Genetics Department.
He holds a BS degree in Biochemistry and
Molecular Biology and MS and PhD degrees
in Computer Science and Engineering. He has
more than 20 years of research experience in bi-
ological data mining, systems biology, and trans-

lational bioinformatics, with more than 150 peer-reviewed publications.
Prior to join UAB, he holds tenured faculty positions at Indiana University
and Purdue University.

Zechen Chong is an Assistant Professor in the
Department of Genetics and Informatics Insti-
tute at the University of Alabama at Birming-
ham. His group is focusing on development of
algorithms for next-generation sequencing data
and third generation sequencing data analysis.
In particular, he is interested in novel algorithms
to discover genomic rearrangements in health
and disease genomes.

