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Abstract—De novo genome assembly is the process of stitching
short DNA sequences to generate longer DNA sequences, without
using any reference sequence for alignment. It enables high-
throughput genome sequencing and thus accelerates the discovery
of new genomes. In this paper, we present a toolkit, called
PPA-assembler, for de novo genome assembly in a distributed
setting. PPA-assembler adopts the popular de Bruijn graph based
approach, and the operations run on Google’s Pregel framework
with strong performance guarantees. PPA-assembler demon-
strates superior performance compared with existing assem-
blers, and is open-sourced at https://github.com/yaobaiwei/PPA-
Assembler. The full version of this paper can be found at
https://arxiv.org/abs/1801.04453.

I. INTRODUCTION

Modern sequencing technologies generate many short DNA

segments called reads, which are stitched together to generate

longer DNA sequences for finding new genomes. Since single-

threaded assemblers often require a high-end server with

terabytes of RAM, many parallel/distributed assemblers have

emerged [6], [1], [2], [4]. Instead of providing yet another

parallel/distributed assembler, we abstract the key operations

from existing assemblers, such as contig merging, tip remov-

ing and bubble filtering; we implement each operation as a

distributed program with strong performance guarantees, and

assemble them into a scalable distributed assembler called

PPA-assembler. Users can also easily extend and reassemble

the operations to implement various sequencing strategies.

PPA-assembler adopts the popular de Bruijn graph (DBG)

based approach for sequencing [5]. We thus build it on top

of our graph processing system Pregel+1, which open-sources

Google’s Pregel framework for iterative graph computation.

Each operation in sequencing is implemented as a distributed

Pregel program where one iteration takes cost linear to the

graph size, and the number of iterations is at most loga-
rithmic to the graph size. Users can easily revise existing

operations and write new operations using the intuitive “think

like a vertex” programming model (to implement different

sequencing strategies). Each operation may either read its input

from Hadoop Distributed File System (HDFS), or directly

obtain its input by converting the output of another operation

in memory. Thus, the operations can be easily assembled,

and PPA-assembler can readily inter-operate with existing Big

Data systems by exchanging data through HDFS.

Paper Organization. Section II reviews Google’s Pregel.

Section III provides a brief introduction of DBG based as-

1Pregel+: http://www.cse.cuhk.edu.hk/pregelplus/

sembly. Section IV presents the implementation of our vari-

ous operations in PPA-assembler. Finally, we summarize the

experimental results and conclude this paper in Section V.

II. PREGEL REVIEW

Given a graph G = (V,E), we denote the number of vertices

|V | (resp. edges |E|) by n (resp. m). We also denote a vertex

v’s in-degree (resp. out-degree) by din(v) (resp. dout(v)). We

abuse the notation and denote the ID of v also by v.

Pregel [3] distributes vertices to different machines in a

cluster, where each vertex is stored with its adjacency list.

A program in Pregel implements a user-defined compute(.)

function and proceeds in iterations (called supersteps). In each

superstep, each active vertex v calls compute(msgs), where

msgs is the set of incoming messages sent from other vertices

in the previous superstep. In v.compute(msgs), v may process

msgs and update its value, send new messages to other vertices,

and vote to halt (i.e., deactivate itself). A halted vertex is

reactivated if it receives a message in a subsequent superstep.

The program terminates when all vertices are inactive and

there is no pending message for the next superstep. Finally,

the results (e.g., vertex values) are dumped to HDFS.

We extend Pregel’s API with the following two extensions,

which are very useful in implementing PPA-assembler. Firstly,

for two consecutive jobs ja and jb, we allow jb to directly

obtain input from the output of ja in memory (no need to go

through HDFS). Users need to define a user-defined function

(UDF) convert(v) which indicates how to transform an object

v of job ja’s vertex class to job jb’s vertex class. Since Pregel+

distributes vertices to machines by hashing vertex ID, the

converted vertex objects are shuffled according to their new

ID. Secondly, the input data may not be in the format of one

line per vertex. For example, each line may correspond to

one edge. To create vertices, a mini-MapReduce procedure

is supported during graph loading to group edges by source

vertex ID, so that each group can be reduced into a vertex

object v along with an adjacency list of v’s out-neighbors.

Our prior work [7] defined a class of scalable Pregel

algorithms called PPAs (practical Pregel algorithms), and it

designed PPAs for many fundamental graph problems which

can be used as building blocks of other problems. Formally,

a Pregel algorithm is called a balanced PPA (BPPA) if it

has (1) linear space usage: each vertex v uses O(din(v) +
dout(v)) space of storage; (2) linear computation cost: the time

complexity of v.compute(.) is O(din(v)+ dout(v)); (3) linear
communication cost: at each superstep, the volume of the
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Figure 1. Reads and k-mers

messages sent/received by each vertex v is O(din(v)+dout(v));
(4) the algorithm terminates after O(logn) supersteps.

Constraints (1)–(3) offer good load balancing, but for some

problems we can only achieve overall linear space usage, com-
putation and communication cost. Such a Pregel algorithms is

simply called a PPA.

III. DE NOVO GENOME ASSEMBLY

This section provides a brief background on DBG-based

sequencing; a complete review can be found at the full version.

We model a DNA molecule as a very long sequence of nu-

cleotides, where each nucleotide can take one of the four base

types A, C, G and T. Since sequencing long DNA segments is

error-prone, modern sequencing technologies generate a large

number of short DNA segments, called reads. Figure 1(a)

illustrates this process, where 4 DNA clones are sheared into 6

reads. Note that a DNA molecule consists of two strands coiled

around each other, and we only consider strand 1 in Figure 1(a)

for simplicity. Reads can have variable lengths, and sequencing

errors may happen at some positions such as in reads 1© and 5©
(errors highlighted in red). Also, reads may overlap with each

other, such as reads 2© and 4© that share the segment “AGT”.

It is through these overlaps that genome assembly algorithms

stitch reads to get longer sequences (called contigs).

The DBG-based assembly approach first constructs a de

Bruijn graph (DBG) from the reads, and then finds contigs

from the DBG. To construct a DBG, each read is cut into

consecutive sub-sequences of length k + 1, where each sub-

sequence is called a (k + 1)-mer. For example, Figure 1(b)

illustrates how we can generate 3-mers from reads 3©, 4©
and 6© of Figure 1(a) (here k = 2), where read 3© “ATTG” can

be cut into two 3-mers “ATT” and “TTG”. For each (k+1)-
mer, we define its prefix (resp. suffix) as the subsequence

without the last (resp. first) nucleotide, which is a k-mer.

The k-mers define the vertices in the DBG, and each (k+1)-
mer defines an edge from its prefix to its suffix in the DBG.

For example, in Figure 1(b), the first 3-mer of read 3©, i.e.,

“ATT”, defines a directed edge in DBG from vertex “AT” to

vertex “TT”. All the 3-mers in Figure 1(a) create a path as

shown on the top right of Figure 1(b), which stitches reads 3©,
4© and 6© together into a longer contig “ATTGCAAGT”.

Ideally, if k is large enough, any sub-sequence of length k
in the whole DNA sequence appears only once, i.e., any k-

mer vertex of the DBG corresponds to a unique sub-sequence

in the whole sequence. In this case, the DBG is essentially a

AT TT TG GC

CA AA

AG GT TC

GA

TACT

Tip Bubble

Figure 2. De Bruijn Graph

path following which we can reconstruct the whole sequence.

However, k cannot be arbitrarily large in practice, since reads

are short and any read with length less than (k + 1) will

be ignored. A k-mer vertex is ambiguous if it corresponds

to several different segment positions in the whole sequence.

While the whole sequence corresponds to a Eulerian path of

the DBG, there can be many Eulerian paths and our goal is to

find the maximal simple paths in the DBG that do not contain

any ambiguous vertex, which constitute contigs.

Read errors can further complicate the assembly process by

introducing false vertices and edges into the DBG. Two typical

errors are tips and bubbles, as illustrated in Figure 2 which

shows the DBG constructed from the reads of Figure 1(a). A

tip is a short dangling path in the DBG that leads to a dead-

end, such as edge “TG”→“GA” in Figure 2 contributed by

the error in read 1©. A bubble is a sub-path that starts from a

certain vertex at the main path of the DBG, and returns to the

same path after a few hops. Figure 2 shows a bubble where

the main path “GC”→“CA”→“AA”→“AG” is contributed by

correct reads such as 4© and 6©, and the erroneous sub-path

“GC”→“CT”→“TA”→“AG” is caused by erroneous read 5©.

If we can correct the errors, we can obtain longer contigs,

but overly aggressive strategies may lead to false alarms that

create wrong (albeit longer) contigs. For example, a long tip

needs to be generated by multiple errors which is unlikely. For

bubbles, we remove sub-path(s) with a very low coverage.

Here, the coverage of an edge is defined as the number of

reads that generate it. A correct path is unlikely to have a low

coverage as there are many DNA clones. We also require a

sub-path to be similar to the main path (with high coverage) in

order to remove it, since it is unlikely to have multiple errors

that significantly changes the corresponding sub-sequence.

So far, we only discussed the case of one strand. In reality,

reads may be obtained from both strands of the DNA molecule.

In this case, additional manipulations on edge directionality

(e.g., reverse complement) is needed to account for the chem-

ical orientation of each strand. Due to space limit, we refer

readers to our full version for the orientation-related details.
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IV. PPA-ASSEMBLER ALGORITHMS

We first present our compact graph data structures, and then

describe the operations supported by PPA-Assembler.

A. Vertex & Edge Formats

Since genome assembly has a very high memory demand,

we design compact data structures for vertices and edges. Due

to space limit, we only describe them briefly and leave the

complete format information to the full version of this paper.

Each vertex in a Pregel program has a unique ID for

message passing, and we use integer to specify vertex ID

for efficiency. There are two kinds of vertices: (1) k-mer and

(2) contig. We encode the sequence of a k-mer directly into its

integer ID. Recall that reads are cut into (k+1)-mers during

DBG construction; assume that k ≤ 31, then we use 64-bit

integer for ID as follows (if k > 31, we use a big integer

with more bits). Each nucleotide is represented by two bits:

A (00), T (11), G (10), C (01), and thus a k-mer requires at

most 62 bits to represent. The first 2 bits can be flipped to

1 to indicate that a k-mer or a contig has no neighbor along

one direction (e.g., the dead-end of a tip). In contrast, since a

contig can be an arbitrarily long sequence, we cannot encode

the sequence into the contig’s ID. Instead, since the contigs are

distributed among the machines after their generation, we let

the i-th worker machine assign its j-th contig a 64-bit ID that

equals the 32-bit integer representation of i (with the first 2 bits

fixed to 00) concatenated with the 32-bit integer representation

of j. To avoid collision with the ID of a k-mer, we also flip

the most significant bit to be 1.

Each vertex also maintains an adjacency list of its neighbor-

ing vertices (k-mers or contigs). Since a contig is obtained by

merging unambiguous k-mers, it has only two neighbors along

its two opposite sequencing directions, where each neighbor

is either an ambiguous k-mer or the dead-end. In contrast, a

k-mer vertex may have up to 4 k-mer in-neighbors and 4 k-

mer out-neighbors (i.e., connecting A/T/G/C on either side),

and we compress its adjacency lists using compact bitmaps to

save memory space. A k-mer vertex tracks its contig neighbors

differently from the k-mer neighbors (to be described shortly).

A contig vertex keeps its sequence as a variable-length

bitmap, and also maintains its own coverage, which is com-

puted as the minimum coverage of all edges (i.e., (k + 1)-
mers) merged by the contig. A k-mer vertex v tracks a contig

neighbor u by also maintaining u’s other k-mer neighbor

(denoted by w) for direct message passing, and u is essentially

edge (v,w) that can keep information like sequence length and

coverage to facilitate tip removing and bubble filtering.

A k-mer vertex can be of one of three types: (a) 〈1〉: such a

vertex only has one neighbor, and is thus a dead-end; (b) 〈1-

1〉: such a vertex has one in-neighbor and one out-neighbor

and is thus unambiguous; (c) 〈m-n〉: such a vertex has at least

two neighbors but is not of type 〈1-1〉, and it is ambiguous.

Note that k-mer vertex is contributed by the prefix or suffix

of a (k+1)-mer and thus must have at least one neighbor.

Since a contig is generated by merging unambiguous k-

mers, it can only be of type 〈1〉 or type 〈1-1〉. It is possible

Contig Labeling

DBG 
Construction

data
operation

reads

k-mers

unambiguous
vertices

contigs

ambiguous
k-mers

Contig Merging

Bubble Filtering

Tip Removing

k-mers + contigs

Figure 3. Operation Diagram

to have an isolated contig where both ends are dead-ends, and

we treat it as of type 〈1〉 (i.e., a tip).

B. Operations and Their Algorithms

PPA-assembler provides a library of operations, and each

is a PPA. Figure 3 shows the data flow diagram of PPA-

assembler, which includes five operations: 1© DBG construc-
tion, which constructs a DBG from the DNA reads; 2© contig
labeling, which divides the vertices into two sets (ambiguous

ones and unambiguous ones) and labels unambiguous vertices

by the contigs that they belong to; 3© contig merging, which

merges unambiguous vertices into contigs according to the

labels; 4© bubble filtering, which filters any low-coverage

contig that shares both ends with another high-coverage contig

with a similar sequence; 5© tip removing, which takes the

ambiguous k-mers and the contigs (after bubble filtering),

and removes tips. The output of tip removing can be fed to

the “contig labeling” operation again to grow longer contigs

(see arrow 6©), since the previous error-correction operations

may have converted some ambiguous k-mer vertices into

unambiguous ones, and operations 2©– 5© may loop as needed.

1© DBG Construction. This operation loads DNA reads from

HDFS, and creates a DBG from them through two mini-

MapReduce phases: (i) the first phase extracts (k + 1)-mers

from reads, and (ii) the second phase constructs k-mer vertices

and their adjacency lists from the extracted (k + 1)-mers,

which form the DBG. In Phase (i), map(.) parses each read

into (k+1)-mers using a sliding window of (k+1) elements

(c.f. Figure 1(b)). The sequence of a (k+ 1)-mer is directly

encoded in its 64-bit integer ID, which functions as the key

for shuffling. Each machine aggregates the count of each

generated (k+1)-mer, and the “(k+1)-mer, count” pairs are

shuffled for reduce(.) to obtain the total count of each (k+1)-
mer. A (k+1)-mer is filtered if its coverage is no more than

a user-defined frequency threshold, since this (k+ 1)-mer is

very likely to be contributed by erroneous readers.

In Phase (ii), map(.) extracts two k-mers from each non-

filtered (k+1)-mers. If an extracted k-mer is newly obtained

on a machine, the machine creates a k-mer vertex for it.

A directed edge from the prefix k-mer vertex to the suffix

k-mer vertex is also added into their adjacency lists. Edge

count (equal to the (k+ 1)-mer’s count) is also recorded or

incremented. The k-mer vertices with partially constructed

adjacency lists are then shuffled by the 64-bit integer ID, and
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reduce(.) merges the partially constructed adjacency lists of

each k-mer into a complete one (including the edge coverage).

2© Contig Labeling. Let us call a path that only contains

vertices of types 〈1〉 and 〈1-1〉 as an unambiguous path. The

“contig labeling” operation marks all vertices on each maximal

unambiguous path with a unique label, so that they can be

grouped to create a contig later. A vertex is at one end of

a maximal unambiguous paths, if its type is 〈1〉, or if its

type is 〈1-1〉 and at least one neighbor is of type 〈m-n〉. The

operation first recognizes contig-ends in two supersteps: (1) in

superstep 1, every 〈m-n〉 vertex broadcasts its ID to all its

neighbors, and then votes to halt; it will never be reactivated

again as subsequent computation only involves unambiguous

vertices; (2) in superstep 2, a vertex recognizes itself as a

contig-end if it is of type 〈1〉, or if it is of type 〈1-1〉 and

receives the ID of any ambiguous vertex sent from superstep 1.

We first let contig-end vertices remove all their edges with

ambiguous vertices, so that the DBG graph becomes a set of

isolated unambiguous paths, each corresponding to a contig.

To find all contigs in O(logn) supersteps, we run a variant

of the BPPA for list ranking proposed in [7]. In this algorithm,

each unambiguous vertex maintains a pair of IDs, which is ini-

tialized as the pair of neighbor IDs. Then, pointer jumping [7]

is performed in both directions of every unambiguous path in

parallel, till every unambiguous vertex v obtains the pair of

IDs of two contig-end vertices for v’s path. This is the key

algorithm which also handles the orientation related issues,

and the complete algorithm is given in our full paper version.

Bidirectional list ranking alone is not sufficient if the DBG

contains a cycle of vertices of type 〈1-1〉, since these vertices

will never reach an end. Therefore, if the number of active

vertices is larger than 0 and does not decrease after a round,

the PPA for finding connected components proposed in [7] is

run on the remaining active vertices, so that each vertex in a

cycle obtains the smallest ID in the cycle. We actually run an

improved algorithm which is given in our full paper version.

3© Contig Merging. This operation takes the labeled unam-

biguous vertices as the input, and uses a mini-MapReduce

procedure to group the vertices by their labels. All vertices

with the same contig-label are input to reduce(.), which then

merges the sequences of these vertices to obtain the contig.

Vertices are stitched from a contig-end vertex v f irst , which

contains a neighbor not in the group; if such a vertex cannot

be found, the contig is cycled and we start stitching from an

arbitrary vertex. If the last vertex vlast to stitch is of type 〈1〉,
we exit reduce(.) if the aggregated contig length is not above

the user-specified tip-length threshold. In all other cases, the

stitched contig is output with its coverage set as the minimum

edge coverage seen during the concatenation, and with its two

neighbors set as v f irst ’s in-neighbor and vlast ’s out-neighbor.

4© Bubble Filtering. The constructed contigs may be further

filtered with “bubble filtering” through a mini-MapReduce

procedure. In map(.), each contig with neighbors nb1 and nb2

(nb1 < nb2), both of type 〈m-n〉, associates itself with a key

(nb1,nb2) for shuffling. As a result, all contigs that share

two neighboring ambiguous vertices (nb1,nb2) are input to

reduce(.), which prunes low-coverage contigs whose edit dis-

tance to an unpruned contig is within a user-defined threshold.

5© Tip Removing. This operation takes both ambiguous k-

mers and the merged contigs as input. We first need to update

the adjacency lists of the ambiguous k-mers, to link them

to the newly merged contigs. This takes 2 supersteps: (i) in

superstep 1, each contig vertex sends its content (including

length) to both neighbors (if not contig-ends); then (ii) in

superstep 2, each k-mer vertex collects these information

into its adjacency list. Since only path length is concerned

during tip removing, and length of adjacent contigs is already

collected by every k-mer vertex, only k-mer vertices need to

participate in the operations. Note that the tip removing may

change some 〈m-n〉 vertices into 〈1〉 vertices, hence generating

new tips. We thus run multiple phases of vertex-centric tip

removing till no new 〈1〉 vertex is generated.

In a phase, request-messages start passing from each 〈1〉
vertex, where cumulative sequence length is recorded. A

request-message received from one neighbor of a vertex v
(which is 〈1-1〉-typed) is relayed to the other neighbor of

v with cumulative sequence length updated, till a vertex of

type 〈m-n〉 or 〈1〉 is reached. The vertex checks whether the

cumulative sequence length is not larger than the tip-length

threshold, and if so, it sends a delete-message back. The

delete-message is relayed through 〈1-1〉 vertices till reaching

the 〈1〉 vertex that initiates the request-message, and vertices

and contigs along the relaying path delete themselves.

V. EXPERIMENTS & CONCLUSIONS

We compared with existing parallel assemblers in both

efficiency and result quality, and the complete experiments

are reported in our full paper version. Our findings are that

PPA-assemblers is many times faster than other distributed

assemblers, and achieves comparable sequencing quality.
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