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ABSTRACT
Representation learning on graphs, also called graph embedding,
has demonstrated its significant impact on a series of machine
learning applications such as classification, prediction and recom-
mendation. However, existing work has largely ignored the rich
information contained in the properties (or attributes) of both nodes
and edges of graphs in modern applications, e.g., those represented
by property graphs. To date, most existing graph embedding meth-
ods either focus on plain graphs with only the graph topology, or
consider properties on nodes only. We propose PGE, a graph repre-
sentation learning framework that incorporates both node and edge
properties into the graph embedding procedure. PGE uses node
clustering to assign biases to differentiate neighbors of a node and
leverages multiple data-driven matrices to aggregate the property
information of neighbors sampled based on a biased strategy. PGE
adopts the popular inductive model for neighborhood aggregation.
We provide detailed analyses on the efficacy of our method and
validate the performance of PGE by showing how PGE achieves
better embedding results than the state-of-the-art graph embedding
methods on benchmark applications such as node classification and
link prediction over real-world datasets.
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1 INTRODUCTION
Graphs are ubiquitous today due to the flexibility of using graphs to
model data in a wide spectrum of applications. In recent years, more
and more machine learning applications conduct classification or
prediction based on graph data [7, 15, 17, 28], such as classifying
protein’s functions in biological graphs, understanding the rela-
tionship between users in online social networks, and predicting
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purchase patterns in buyers-products-sellers graphs in online e-
commerce platforms. However, it is not easy to directly make use
of the structural information of graphs in these applications as
graph data are high-dimensional and non-Euclidean. On the other
hand, considering only graph statistics such as degrees [6], kernel
functions [14], or local neighborhood structures [24] often provides
limited information and hence affects the accuracy of classifica-
tion/prediction.

Representation learning methods [5] attempt to solve the above-
mentioned problem by constructing an embedding for each node
in a graph, i.e., a mapping from a node to a low-dimensional Eu-
clidean space as vectors, which uses geometric metrics (e.g., Eu-
clidean distance) in the embedding space to represent the struc-
tural information. Such graph embeddings [15, 17] have achieved
good performance for classification/prediction on plain graphs (i.e.,
graphs with only the pure topology, without node/edge labels and
properties). However, in practice, most graphs in real-world do not
only contain the topology information, but also contain labels and
properties (also called attributes) on the entities (i.e., nodes) and
relationships (i.e., edges). For example, in the companies that we
collaborate with, most of their graphs (e.g., various graphs related
to products, buyers and sellers from an online e-commerce platform;
mobile phone call networks and other communication networks
from a service provider) contain rich node properties (e.g., user pro-
file, product details) and edge properties (e.g., transaction records,
phone call details). We call such graphs as property graphs. Ex-
isting methods [10, 16, 18, 22, 30, 31, 36] have not considered to
take the rich information carried by both nodes and edges into the
graph embedding procedure.

This paper studies the problem of property graph embedding.
There are two main challenges. First, each node v may have many
properties and it is hard to find which properties may have greater
influence on v for a specific application. For example, consider the
classification of papers into different topics for a citation graph
where nodes represent papers and edges model citation relation-
ships. Suppose that each node has two properties, “year” and “title”.
Apparently, the property “title” is likely to be more important for
paper classification than the property “year”. Thus, how to measure
the influence of the properties on each node for different applica-
tions needs to be considered. Second, for each nodev , its neighbors,
as well as the connecting edges, may have different properties. How
to measure the influences of both the neighbors and the connecting
edges on v for different application poses another challenge. In the
above example, for papers referencing a target paper, those with
high citations should mean more to the target paper than those
with low citations.

Among existing work, GCN [22] leverages node property infor-
mation for node embedding generation, while GraphSAGE [18]
extends GCN from a spectral method to a spatial one. Given an
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application, GraphSAGE trains a weight matrix before embedding
and then aggregates the property information of the neighbors
of each node with the trained matrix to compute the node em-
bedding. However, GraphSAGE does not differentiate neighbors
with property dissimilarities for each node, but rather treats all
neighbors equally when aggregating their property information.
Moreover, GraphSAGE considers only node information and ig-
nores edge directions and properties. Apart from the properties on
nodes/edges, real-world graphs also have special structural features.
For example, in social networks, nodes are often organized in the
form of communities, where similar nodes are either neighbors due
to the homophily feature [3, 4], or not direct neighbors but with
similar structure due to the structural equivalent feature [13, 19, 37].
Thus, it is important to also consider structural features. For that,
node2vec [16] learns node embeddings by combining two strate-
gies, breadth-first random walk and depth-first random walk, to
account for the homophily feature and structural equivalent fea-
ture. However, node2vec only utilizes these two structural features
without considering any property information.

To address the limitations of existing methods, we propose a
new framework, PGE, for property graph embedding. PGE applies
a biased method to differentiate the influences of the neighbors
and the corresponding connecting edges by incorporating both
the topology and property information into the graph embedding
procedure. The framework consists of three main steps: (1) property-
based node clustering to classify the neighborhood of a node into
similar and dissimilar groups based on their property similarity
with the node; (2) biased neighborhood sampling to obtain a smaller
neighborhood sampled according the bias parameters (which are set
based on the clustering result), so that the embedding process can
be more scalable; and (3) neighborhood aggregation to compute the
final low dimensional node embeddings by aggregating the property
information of sampled neighborhood with weight matrices trained
with neural networks.We also analyze in details how the three steps
work together to contribute to a good graph embedding and why
our biased method (incorporating node and edge information) can
achieve better embedding results than existing methods.

We validated the performance of PGE by comparing with repre-
sentative graph embedding methods, including DeepWalk [30] and
node2vec [16] representing random walk based methods, GCN [22]
for graph convolutional networks, and GraphSAGE [18] for neighbor
aggregation based on weight matrices. We tested these methods for
two benchmark applications, node classification and link predic-
tion, on a variety of real-world graphs. The results show that PGE
achieves significant performance improvements over these existing
methods. The experimental evaluation validates the importance
of incorporating node/edge property information, in addition to
topology information, into graph embedding. It also demonstrates
the effectiveness of our biased strategy that differentiates neighbors
to obtain better embedding results.

2 RELATEDWORK
There are three main methods for graph embedding: matrix factor-
ization, random walk, and neighbors aggregation.

For matrix factorization methods, [2, 8] use adjacency matrix
to define and measure the similarity among nodes for graph em-
bedding. HOPE [29] further preserves high-order proximities and
obtains asymmetric transitivity for directed graphs. Another line of
works utilize the random walk statistics to learn embeddings with
the skip-gram model [26], which applies vector representation to
capture word relationships.

The key idea of random walk is that nodes usually tend to co-
occur on short random walks if they have similar embeddings [17].
DeepWalk [30] is the first to input random walk paths into a skip-
gram model for learning node embeddings. node2vec [16] further
utilizes biased random walks to improve the mapping of nodes
to a low-dimensional space, while combining breadth-first walks
and depth-first walks to consider graph homophily and structural
equivalence. To obtain larger relationships, Walklets [31] involves
offset to allow longer step length during a random walk, while
HARP [10] makes use of graph preprocessing that compresses some
nodes into one super-node to improve random walk.

According to [17],matrix factorization and randomwalkmethods
are shallow embedding approaches and have the following draw-
backs. First, since the node embeddings are independent and there
is no sharing of parameters or functions, these methods are not
efficient for processing large graphs. Second, they do not consider
node/edge properties. Third, as the embeddings are transductive
and can only be generated during the training phrase, unseen nodes
cannot be embedded with the model being learnt so far.

To address (some of) the above problems, graph-based neural
networks have been used to learn node embeddings, which en-
code nodes into vectors by compressing neighborhood informa-
tion [9, 20, 36]. However, although this type of methods can share
parameters, strictly speaking they are still transductive and have
performance bottlenecks for processing large graphs as the input
dimensionality of auto-encoders is equal to the number of nodes.
Several recent works [11, 18, 22, 23, 34] attempted to use only local
neighborhood instead of the entire graph to learn node embeddings
through neighbor aggregation, which can also consider property
information on nodes. GCN [22] uses graph convolutional networks
to learn node embeddings, by merging local graph structures and
features of nodes to obtain embeddings from the hidden layers.
GraphSAGE [18] is inductive and able to capture embeddings for
unseen nodes through its trained auto-encoders directly. The ad-
vantage of neighborhood aggregation methods is that they not only
consider the topology information, but also compute embeddings
by aggregating property vectors of neighbors. However, existing
neighborhood aggregation methods treat the property information
of neighbors equally and fail to differentiate the influences of neigh-
bors (and their connecting edges) that have different properties.

3 THE PGE FRAMEWORK
We use G = {V, E,P,L} to denote a property graph , where V
is the set of nodes and E is the set of edges. P is the set of all
properties and P = PV ∪ PE , where PV =

⋃
v ∈V {pv }, PE =⋃

e ∈E {pe }, and pv and pe are the set of properties of node v and
edge e , respectively. L = LV ∪ LE is the set of labels, where
LV and LE are the sets of node and edge labels, respectively.
We use Nv to denote the set of neighbors of node v ∈ V , i.e.,



Nv = {v ′ : (v,v ′) ∈ E}. In the case that G is directed, we may
further define Nv as the set of in-neighbors and the set of out-
neighbors, though in this paper we abuse the notation a bit and
do not use new notations such as N in

v and Nout
v for simplicity of

presentation, as the meaning should be clear from the context.
The property graph model is general and can represent other

popular graph models. If we set P = ∅ and L = ∅, then G becomes
a plain graph, i.e., a graph with only the topology. If we setPV = A,
PE = ∅, and L = ∅, where A is the set of node attributes, then
G becomes an attributed graph. If we set L = LV , P = ∅, and
LE = ∅, then G is a labeled graph.

3.1 Problem Definition
The main focus of PGE is to utilize both topology and property in-
formation in the embedding learning procedure to improve the
results for different applications. Given a property graph G =

{V, E,P,L}, we define the similarity between two nodes vi ,vj ∈
V as sG(vi ,vj ). The similarity can be further decomposed into
two parts, sG(vi ,vj ) = l(sP (vi ,vj ), sT (vi ,vj )), where sP (vi ,vj )
is the property similarity and sT (vi ,vj ) is the topology similarity
between vi and vj , and l(·, ·) is a non-negative mapping.

The embedding of nodev ∈ V is denoted as zv , which is a vector
obtained by an encoder ENC(v) = zv . Our objective is to find the
optimal ENC(·), which minimizes the gap

∑
vi ,vj ∈V | |sG(vi ,vj ) −

z⊤vi zvj | |=
∑
vi ,vj ∈V | |l(sP (vi ,vj ), sT (vi ,vj )) − z⊤vi zvj | |.

From the above problem definition, it is apparent that only con-
sidering the topology similarity sT (vi ,vj ), as the traditional ap-
proaches do, cannot converge to globally optimal results. In addi-
tion, given a nodev and its neighborsvi ,vj , the property similarity
sP (v,vi ) can be very different from sP (v,vj ). Thus, in the PGE
framework, we use both topology similarity and property similarity
in learning the node embeddings.

3.2 The Three Steps of PGE
The PGE framework consists of three major steps as follows.

• Step 1: Property-based Node Clustering. We cluster nodes in
G based on their properties to producek clustersC={C1,C2, ...,Ck }.
A standard clustering algorithm such as K-Means [25] or DB-
SCAN [12] can be used for this purpose, where each node to be
clustered is represented by its property vector (note that graph
topology information is not considered in this step).

• Step 2: Biased Neighborhood Sampling. To combine the influ-
ences of property information and graph topology by l(·, ·), we
conduct biased neighborhood sampling based on the results of
clustering in Step 1. To be specific, there are two phases in this
step: (1) For each neighbor v ′ ∈ Nv , if v ′ and v are in the same
cluster, we assign a bias bs to v ′ to indicate that they are similar;
otherwise we assign a different bias bd to v ′ instead to indicate
that they are dissimilar. (2) We normalize the assigned biases
on Nv , and then sample Nv according to the normalized biases
to obtain a fixed-size sampled neighborhood Ns

v .
• Step 3: Neighborhood Aggregation. Based on the sampled
neighborsNs

v in Step 2, we aggregate their property information
to obtain zv by multiplying the weight matrices that are trained
with neural networks.

In the following three sub-sections, we discuss the purposes and
details of each of the above three steps.

3.2.1 Property-based Node Clustering. The purpose of Step 1 is to
classify Nv into two types for each node v based on their node
property information, i.e., those similar to v or dissimilar to v . If v
and its neighbor v ′ ∈ Nv are in the same cluster, we will regard v ′

as a similar neighbor of v . Otherwise, v ′ is dissimilar to v .
Due to the high dimensionality and sparsity of properties (e.g.,

property values are often texts but can also be numbers and other
types), which also vary significantly from datasets to datasets, it is
not easy to classify the neighborhood of each node into similar and
dissimilar groups while maintaining a unified global standard for
classifying the neighborhood of all nodes. For example, one might
attempt to calculate the property similarity between v and each of
v’s neighbors, for allv ∈ V , and then set a threshold to classify the
neighbors into similar and dissimilar groups. However, different
nodes may require a different threshold and their similarity ranges
can be very different. Moreover, each node’s neighborhood may be
classified differently and as we will show later, the PGE framework
actually uses the 2-hop neighborhood while this example only
considers the 1-hop neighborhood. Thus, we need a unified global
standard for the classification. For this purpose, clustering the nodes
based on their properties allows all nodes to be classified based on
the same global standard. For example, the 1-hop neighbors and the
2-hop neighbors of a node v are classified in the same way based
on whether they are in the same cluster as v .

3.2.2 Biased Neighborhood Sampling. Many real-world graphs
have high-degree nodes, i.e., these nodes have a large number of
neighbors. It is inefficient and often unnecessary to consider all the
neighbors for neighborhood aggregation in Step 3. Therefore, we
use the biases bs and bd to derive a sampled neighbor set Ns

v with
a fixed size for each node v . As a result, we obtain a sampled graph
Gs = {V, Es }, where Es = {(v,v ′) : v ′ ∈ Ns

v }. Since the biases bs
and bd are assigned to the neighbors based on the clustering results
computed from the node properties, Gs contains the topology in-
formation of G while it is constructed based on the node property
information. Thus, Step 2 is essentially a mapping l(·, ·) that fuses
sP (v,v

′) and sT (v,v ′).
The biases bs and bd are the un-normalized possibility of se-

lecting neighbors from dissimilar and similar clusters, respectively.
The value of bs is set to 1, while bd can be varied depending on the
probability (greater bd means higher probability) that dissimilar
neighbors should be selected into Gs . We will analyze the effects
of the bias values in Section 4 and verify by experimental results
in Section 5.3.2. The size of Ns

v is set to 25 by default following
GraphSAGE [18] (also for fair comparison in our experiments). The
size 25 was found to be a good balance point in [18] as a larger
size will significantly increase the model computation time, though
in the case of PGE as it differentiates neighbors, using a sampled
neighborhood could achieve a better quality of embedding than
using the full neighborhood.

3.2.3 Neighborhood Aggregation. The last step is to learn the low
dimensional embedding with Gs = {V, Es }. We use neighborhood
aggregation to learn the function ENC(·) for generating the node
embeddings. For each node, we select its neighbors within two hops



to obtain zv by the following equations:

zv = σ (W 1 · A(z1v ,
∑

v ′∈Ns
v

z1v ′/|N
s
v |)),

z1v ′ = σ (W 2 · A(pv ′ ,
∑

v ′′∈Ns
v′

pv ′′/|Ns
v ′ |)),

where pv is the original property vector of node v , σ (·) is the non-
linear activation function and A(·) is the concatenate operation. We
use two weight matricesW 1 andW 2 to aggregate the node property
information of v’s one-hop neighbors and two-hop neighbors.

The matrixW i is used to assign different weights to different
properties because aggregating (e.g., taking mean value) node prop-
erty vectors directly cannot capture the differences between prop-
erties, but different properties contribute to the embedding in vary-
ing degrees. Also, the weight matrix is data-driven and should
be trained separately for different datasets and applications, since
nodes in different graphs have different kinds of properties. The
weight matrices are pre-trained using Adam SGD optimizer [21],
with a loss function defined for the specific application, e.g., for node
classification, we use binary cross entropy loss (multi-labeled); for
link prediction, we use cross entropy loss with negative sampling.

3.3 Support of Edge Direction and Properties
The sampled graph Gs does not yet consider the edge direction
and edge properties. To include edge properties, we follow the
same strategy as we do on nodes. If edges are directed, we con-
sider in-edges and out-edges separately. We cluster the edges into
ke clusters Ce = {Ce

1 ,C
e
2 , ...,C

e
ke }. Then, we train 2 · ke matrices,

{W 1
1 ,W

1
2 , ...,W

1
ke } and {W 2

1 ,W
2
2 , ...,W

2
ke }, to aggregate node prop-

erties for ke types of edges for the 2-hop neighbors. Finally, we
obtain zv by the following equations:

zv =σ
(
A
(
W 1

0 · z1v ,ACe
i ∈C

e (W 1
i · Ev ′∈Ns

v& (v,v ′)∈Ce
i
[z1v ′])

) )
, (1)

z1v ′ =σ
(
A
(
W 2

0 ·pv ′ ,ACe
i ∈C

e (W 2
i ·Ev ′′∈Ns

v′& (v ′,v ′′)∈Ce
i
[pv ′′])

) )
. (2)

Note that |Ce | should not be too large as to avoid high-dimensional
vector operations. Also, if |Ce | is too large, some clusters may
contain only a few elements, leading to under-fitting for the trained
weight matrices. Thus, we set |Ce | as a fixed small number.

3.4 The Algorithm
Algorithm 1 presents the overall procedure of computing the em-
bedding vector zv of each node v ∈ V . The algorithm follows
exactly the three steps that we have described in Section 3.2.

4 AN ANALYSIS OF PGE
In this section, we present a detailed analysis of PGE. In particular,
we analyze why the biased strategy used in PGE can improve the
embedding results. We also discuss how the bias values bd and bs
and edge information affect the embedding performance.

4.1 The Efficacy of the Biased Strategy
One of the main differences between PGE and GraphSAGE [18]
is that neighborhood sampling in PGE is biased (i.e., neighbors
are selected based on probability values defined based on bd and

Algorithm 1 Property Graph Embedding (PGE)
Input: A Property Graph G = {V, E, P}; biases bd and bs ; the size

of sampled neighborhood |Ns
v |; weight matrices {W 1

1 ,W
1
2 , ...,W

1
ke }

and {W 2
1 ,W

2
2 , ...,W

2
ke }

Output: Low-dimensional representation vectors zv , ∀v ∈ V

1: Clustering V , E, and obtain C and Ce based on P; ▷ step 1
2: for all v ∈ V do ▷ step 2
3: for all v ′ ∈ Nv do
4: Assign b = bd + (bs − bd ) ·

∑
Ci ∈C I{v, v

′ ∈ Ci } to v ′,
5: where I{v, v ′ ∈ Ci } = 1 if v, v ′ ∈ Ci and 0 otherwise;
6: end for
7: Sample |Ns

v | neighbors with bias b ;
8: end for
9: for all v ∈ V do ▷ step 3
10: Compute z1v with Equation (2);
11: end for
12: for all v ∈ V do
13: Compute zv with Equation (1);
14: end for

bs ), while GraphSAGE’s neighborhood sampling is unbiased (i.e.,
neighbors are sampled with equal probability). We analyze the
difference between the biased and the unbiased strategies in the
subsequent discussion.

We first argue that neighborhood sampling is a special case
of random walk. For example, if we set the walk length to 1 and
perform 10 times of walk, the strategy can be regarded as 1-hop
neighborhood sampling with a fixed size of 10. Considering that
the random walk process in each step follows an i.i.d. process for
all nodes, we define the biased strategy as a |V| × |V| matrix P,
where Pi, j is the probability that node vi selects its neighbor vj in
the random walk. If two nodes vi and vj are not connected, then
Pi, j = 0. Similarly, we define the unbiased strategy Q, where all
neighbors of any node have the same probability to be selected. We
also assume that there exists an optimal strategy B, which gives
the best embedding result for a given application.

A number of works [10, 16, 31] have already shown that adding
preference on similar and dissimilar neighbors during random walk
can improve the embedding results, based on which we have the
following statement: for a biased strategy P, if | |B−P| |1 < | |B−Q| |1,
where B , Q, then P has a positive influence on improving the
embedding results.

Thus, to verify the efficacy of PGE’s biased strategy, we need to
show that our strategy P satisfies | |B − P| |1 ≤ ||B − Q| |1. To do so,
we show that bd and bs can be used to adjust the strategy P to get
closer to B (than Q).

Assume that nodes are classified intok clustersC = {C1,C2, ...,Ck }
based on the property information PV . For the unbiased strategy,
the expected similarity of two nodes v,v ′ ∈ V for each random
walk step is:

E[sG(v,v ′)] =

∑
v ∈V

∑
vi ∈Nv sG(v,vi )

|E |
.

The expectation of two nodes’ similarity for each walk step in our
biased strategy is:

E[sG(v,v ′)] =

∑
v ∈V

∑
vi ∈Nv∩Cv ns (v) · sG(v,vi )

|E |

k



+

∑
v ∈V

∑
vj ∈Nv∩(Cv )c nd (v) · sG(v,vj )

|E | ·(k−1)
k

, (3)

where ns (v) and nd (v) are the normalized biases of bs and bd for
node v respectively, Cv is the cluster that contains v , and (Cv )

c =

C\{Cv }. Since only connected nodes are to be selected in a random
walk step, the normalized biases ns (v) and nd (v) can be derived by

ns (v) =
bs

bd ·
∑
v ′∈Nv I{v

′ ∈ Cv } + bs ·
∑
v ′∈Nv I{v

′ ∈ (Cv )c }
,

and
nd (v) = ns (v) ×

bd
bs
.

Consider Equation (3), if we set bd = bs , which means nd (v) =
ns (v), then it degenerates to the unbiased random walk strategy.
But if we set bd and bs differently, we can adjust the biased strategy
to either (1) select more dissimilar neighbors by assigning bd > bs
or (2) select more similar neighbors by assigning bs > bd .

Assume that the clustering result is not trivial, i.e., we obtain at
least more than 1 cluster, we can derive that∑

Ci ∈C
∑
v,v ′∈Ci sP (v,v

′)

1
2
∑
Ci ∈C |Ci | · (|Ci | − 1)

>

∑
v,v ′∈V sP (v,v

′)

1
2 |V | · (|V | − 1)

.

Since l(·, ·) is a non-negative mapping with respect to sP (v,v ′), we
have ∑

Ci ∈C
∑
v,v ′∈Ci sG(v,v

′)

1
2
∑
Ci ∈C |Ci | · (|Ci | − 1)

>

∑
v,v ′∈V sG(v,v

′)

1
2 |V | · (|V | − 1)

(4).

Equation (4) shows that the similarity sG(v,v ′) is higher if v and
v ′ are in the same cluster. Thus, based on Equations (3) and (4), we
conclude that parameters bd and bs can be used to select similar
and dissimilar neighbors.

Next, we consider the optimal strategy B for 1-hop neighbors,
where Bi, j = I{vj ∈ Nvi } · b

∗
vi ,vj , and b∗vi ,vj is the normalized

optimal bias value forBi, j . Similarly, the unbiased strategy isQi, j =

I{vj ∈ Nvi } ·
1

|Nvi |
. Thus, we have

| |B − Q| |1 =
∑

vi ∈V

∑
vj ∈V

���b∗vi ,vj − 1
|Nvi |

���.
For our biased strategy, Pi, j = I{vj ∈ Nvi ∩ Cvi } · ns (v) +

I{vj ∈ Nvi ∩ (Cvi )
c } · nd (v). There exist bs and bd that satisfy∑

vi ∈V
∑
vj ∈V

���b∗vi ,vj − 1
|Nvi |

��� ≥ ∑
vi ∈V

∑
vj ∈V

���b∗vi ,vj − I{vj ∈
Nvi ∩ Cvi } · ns (v) − I{vj ∈ Nvi ∩ (Cvi )

c } · nd (v)
���, where strict

inequality can be derived if bd , bs . Thus, | |B − P| |1 < | |B − Q| |1
if we set proper values for bs and bd (we discuss the bias values in
Section 4.2). Without loss of generality, the above analysis can be
extended to the case of multi-hop neighbors.

4.2 The Effects of the Bias Values
Next we discuss how to set the proper values for the biases bs and
bd for neighborhood sampling. We also analyze the impact of the
number of clusters on the performance of PGE.

For neighborhood aggregation in Step 3 of PGE, an accurate
embedding of a node v should be obtained by covering the whole
connected component that contains v , where all neighbors within
k-hops (k is the maximum reachable hop) should be aggregated.

However, for a large graph, the execution time of neighborhood
aggregation increases rapidly beyond 2 hops, especially for power-
law graphs. For this reason, we trade accuracy by considering only
the 2-hop neighbors. In order to decrease the accuracy degradation,
we can enlarge the change that a neighbor can contribute to the
embedding zv by selecting dissimilar neighbors within the 2-hops,
which we elaborate as follows.

Consider a node v ∈ V and its two neighbors vi ,vj ∈ Nv , and
assume that Nvi = Nvj but |pv − pvi | < |pv − pvj |. Thus, we
have sT (v,vi ) = sT (v,vj ) and sP (v,vi ) > sP (v,vj ). Since l(·, ·) is
a non-negative mapping, we also have sG(v,vi ) > sG(v,vj ). Based
on the definitions of zv and z1v ′ given in Section 3.2.3, by expanding
z1v ′ in zv , we obtain

zv =σ
(
W 1 ·A

(
z1v ,

∑
v ′∈Ns

v

σ
(
W 2 ·A(pv ′ ,

∑
v ′′∈Ns

v′

pv ′′/|Ns
v ′ |)

)
/|Ns

v |
))
. (5)

Equation (5) aggregates the node property vector pv (which is
represented within z1v ) and the property vectors of v’s 2-hop neigh-
bors to obtain the node embedding zv . This procedure can be
understood as transforming from sP (v,v

′) to sG(v,v
′). Thus, a

smaller sP (v,v ′) is likely to contribute a more significant change
to zv . With Equation (5), if |pv − pvi | < |pv − pvj |, we obtain
| |z1v − z1vi | |1 < | |z1v − z1vj | |1. Then, for the embeddings, we have
| |zv − zvi | |1 < | |zv − zvj | |1. Since v and vi , as well as v and vj ,
have mutual influence on each other, we conclude that for fixed-hop
neighborhood aggregation, the neighbors with greater dissimilarity
can contribute larger changes to the node embeddings. That is, for
fixed-hop neighborhood aggregation, we should set bd > bs for bet-
ter embedding results, which is also validated in our experiments.

Apart from the values of bd and bs , the number of clusters ob-
tained in Step 1 of PGE may also affect the quality of the node
embeddings. Consider a random graph G = {V, E,P} with aver-
age degree |E |/|V|. Assume that we obtain k clusters from G in
Step 1, then the average number of neighbors in Nv that are in the
same cluster with a node v is |Nv |/k = (|E |/|V|)/k . If k is large,
most neighbors will be in different clusters from the cluster of v .
On the contrary, a small k means that neighbors in Nv are more
likely to be in the same cluster as v . Neither an extremely large k
or small k gives a favorable condition for node embedding based
on the biased strategy because we will have either all dissimilar
neighbors or all similar neighbors, which essentially renders the
neighbors in-differentiable. Therefore, to ensure the efficacy of the
biased strategy, the value of k should not fall into either of the
two extreme ends. We found that a value of k close to the average
degree is a good choice based on our experimental results.

4.3 Incorporating Edge Properties
In addition to the biased values and the clustering number, the
edge properties can also bring significant improvements on the
embedding results. Many real-world graphs such as online social
networks have edge properties like “positive” and “negative”. Con-
sider a social network G = {V, E,P} with two types of edges,
E = E+ ∪ E−. Suppose that there is a node v ∈ V having two
neighbors vi ,vj ∈ Nv , and these two neighbors have exactly the
same property information pvi = pvj and topology information
Nvi = Nvj , but are connected to v with different types of edges,



i.e., (v,vi ) ∈ E+ and (v,vj ) ∈ E−. If we only use Equation (5),
then we cannot differentiate the embedding results of vi and vj
(zvi and zvj ). This is because the edges are treated equally and the
edge property information is not incorporated into the embedding
results. In order to incorporate the edge properties, we introduce
an extra matrix for each property. For example, in our case two
additional matrices are used for the edge properties “positive” and
“negative”; that is, referring to Section 3.3, we have ke = 2 in this
case. In the case of directed graphs, we further consider the in/out-
neighbors separately with different weight matrices as we have
discussed in Section 3.3.

5 EXPERIMENTAL EVALUATION
We evaluated the performance of PGE using two benchmark ap-
plications, node classification and link prediction, which were also
used in the evaluation of many existing graph embedding meth-
ods [15, 17, 28]. In addition, we also assessed the effects of various
parameters on the performance of PGE.
Baseline Methods. We compared PGE with the representative
works of the following three methods: random walk based on skip-
gram, graph convolutional networks, and neighbor aggregation based
on weight matrices.

• DeepWalk [30]: This work introduces the skip-gram model
to learn node embeddings by capturing the relationships
between nodes based on random walk paths. DeepWalk
achieved significant improvements over its former works,
especially for multi-labeled classification applications, and
was thus selected for comparison.

• node2vec [16]: This method considers both graph homophily
and structural equivalence.We compared PGEwith node2vec
as it is the representative work for graph embedding based
on biased random walks.

• GCN [22]: This method is the seminal work that uses convo-
lutional neural networks to learn node embedding.

• GraphSAGE [18]: GraphSAGE is the state-of-the-art graph
embedding method and uses node property information in
neighbor aggregation. It significantly improves the perfor-
mance compared with former methods by learning the map-
ping function rather than embedding directly.

To ensure fair comparison, we used the optimal default parame-
ters of the existing methods. For DeepWalk and node2vec, we used
the same parameters to run the algorithms, with window size set
to 10, walk length set to 80 and number of walks set to 10. Other
parameters were set to their default values. For GCN, GraphSAGE
and PGE, the learning rate was set to 0.01. For node classification,
we set the epoch number to 100 (for GCN the early stop strategy
was used), while for link prediction we set it to 1 (for PubMed we
set it to 10 as the graph has a small number of nodes). The other
parameters of GCN were set to their optimal default values. PGE
also used the same default parameters as those of GraphSAGE such
as the number of sampled layers and the number of neighbors.
Datasets. We used four real-world datasets in our experiments, in-
cluding a citation network, a biological protein-protein interaction
network and two social networks.

Table 1: Dataset statistics

Dataset |V| |E | avg. degree feature dim. # of classes

PubMed 19,717 44,338 2.25 500 3
PPI 56,944 818,716 14.38 50 121

BlogCatalog 55,814 1,409,112 25.25 1,000 60
Reddit 232,965 11,606,919 49.82 602 41

• PubMed [27] is a set of articles (i.e., nodes) related to dia-
betes from the PubMed database, and edges here represent
the citation relationship. The node properties are TF/IDF-
weighted word frequencies and node labels are the types of
diabetes addressed in the articles.

• PPI [35] is composed of 24 protein-protein interaction graphs,
where each graph represents a human tissue. Nodes here are
proteins and edges are their interactions. The node properties
include positional gene sets, motif gene sets and immuno-
logical signatures. The node labels are gene ontology sets.
We used the processed version of [18].

• BlogCatalog [1] is a social network where users select cat-
egories for registration. Nodes are bloggers and edges are
relationships between them (e.g., friends). Node properties
contain user names, ids, blogs and blog categories. Node
labels are user tags.

• Reddit [18] is an online discussion forum. The graph was
constructed from Reddit posts. Nodes here are posts and
they are connected if the same users commented on them.
Property information includes the post title, comments and
scores. Node labels represent the community. We used the
sparse version processed in [18].

Table 1 shows some statistics of the datasets. To evaluate the per-
formance of node classification of the algorithms on each dataset,
the labels attached to nodes are treated as classes, whose number
is shown in the last column. Note that each node in PPI and Blog-
Catalog may have multiple labels, while that in PubMed and Reddit
has only a single label. The average degree (i.e., |E |/|V|) shows
that the citation dataset PubMed is a sparse graph, while the other
graphs have higher average degree. For undirected graphs, each
edge is stored as two directed edges.

5.1 Node Classification
We first report the results for node classification. All nodes in a
graph were divided into three types: training set, validation set
and test set for evaluation. We used 70% for training, 10% for val-
idation and 20% for test for all datasets except for PPI, which is
composed of 24 subgraphs and we followed GraphSAGE [18] to
use about 80% of the nodes (i.e., those in 22 subgraphs) for training
and nodes in the remaining 2 subgraphs for validation and test. For
the biases, we used the default values, bs = 1 and bd = 1000, for
all the datasets. For the task of node classification, the embedding
result (low-dimensional vectors) satisfies zv ∈ Rdl , where dl is the
number of classes as listed in Table 1. The index of the largest value
in zv is the classification result for single-class datasets. In case of
multiple classes, the rounding function was utilized for processing
zv to obtain the classification results. We used F1-score [33], which



Table 2: Performance of node classification

Alg.
F1-Micro (%) Datasets

PubMed PPI BlogCatalog Reddit

DeepWalk 78.85 60.66 38.69 -
node2vec 78.53 61.98 37.79 -
GCN 84.61 - - -

GraphSAGE 88.08 63.41 47.22 94.93
PGE 88.36 84.31 51.31 95.62

Alg.
F1-Macro (%) Datasets

PubMed PPI BlogCatalog Reddit

DeepWalk 77.41 45.19 23.73 -
node2vec 77.08 48.57 22.94 -
GCN 84.27 - - -

GraphSAGE 87.87 51.85 30.65 92.30
PGE 88.24 81.69 37.22 93.29

is a popular metric for multi-label classification, to evaluate the
performance of classification.

Table 2 reports the results, where the left table presents the F1-
Micro values and the right table presents the F1-Macro values. PGE
achieves higher F1-Micro and F1-Macro scores than all the other
methods for all datasets, especially for PPI and BlogCatalog for
which the performance improvements are significant. In general,
the methods that use node property information (i.e., PGE, Graph-
SAGE and GCN) achieve higher scores than the methods that use
the skip-gram model to capture the structure relationships (i.e.,
DeepWalk and node2vec). This is because richer property informa-
tion is used by the former methods than the latter methods that
use only the pure graph topology. Compared with GraphSAGE and
GCN, PGE further improves the classification accuracy by introduc-
ing biases to differentiate neighbors for neighborhood aggregation,
which validates our analysis on the importance of our biased strat-
egy in Section 4. In the remainder of this subsection, we discuss in
greater details the performance of the methods on each dataset.

To classify the article categories in PubMed, since the number
of nodes in this graph is not large, we used the DBSCAN clustering
method in Step 1, which produced k = 4 clusters. Note that the
graph has a low average degree of only 2.25. Thus, differentiating
the neighbors does not bring significant positive influence. Conse-
quently, PGE’s F1-scores are not significantly higher than those of
GraphSAGE for this dataset.

To classify proteins’ functions of PPI, since this graph is not
very large, we also used DBSCAN for clustering, which produced
k = 39 clusters. For this dataset, the improvement made by PGE
over other methods is impressive, which could be explained by
that neighbors in a protein-protein interaction graph play quite
different roles and thus differentiating them may bring significantly
benefits for node classification. In fact, although GraphSAGE also
uses node property information, since GraphSAGE does not dif-
ferentiate neighbors, it does not obtain significant improvement
over DeepWalk and node2vec (which use structural information
only). The small improvement made by GraphSAGE compared with
the big improvement made by PGE demonstrates the effectiveness
of our biased neighborhood sampling strategy. For GCN, since it
does not consider multi-labeled classification, comparing it with
the other methods is unfair and not meaningful for this dataset
(also for BlogCatalog).

BlogCatalog has high feature dimensionality. The original Blog-
Catalog dataset regards the multi-hot vectors as the feature vectors
(with 5, 413 dimensions). We used Truncate-SVD to obtain the low-
dimensional feature vectors (with 1, 000 dimensions). Since the
number of nodes is not large, we used DBSCAN for Step 1, which
produced k = 18 clusters for this dataset. The improvement in the

Table 3: Performance of link prediction

Alg.
MRR (%) Datasets

PubMed PPI BlogCatalog Reddit

GraphSAGE 43.72 39.93 24.61 41.27
PGE (no edge info) 41.47 59.73 23.89 39.81

PGE 70.77 89.21 72.97 56.59

classification accuracy made by PGE is very significant compared
with DeepWalk and node2vec, showing the importance of using
property information for graph embedding. The improvement over
GraphSAGE is also quite significant for this dataset, which is due
to both neighbor differentiation and the use of edge direction.

The Reddit graph is much larger than the other graphs, and thus
we used K-Means (with k = 40) for clustering Reddit instead of
using DBSCAN which is much slower. We do not report the results
for DeepWalk and node2vec as their training processes did not
finish in 10 hours while GraphSAGE and PGE finished in several
minutes. We also do not report GCN since it needs to load the
full graph matrix into each GPU and ran out of memory on our
GPUs (each with 12GB memory). PGE’s F1-scores are about 1%
higher than those of GraphSAGE, which we believe is a significant
improvement given that the accuracy of GraphSAGE is already very
high (94.93% and 92.30%).

5.2 Link Prediction
Next we evaluate the quality of graph embedding for link prediction.
Given two nodes’ embeddings zv and zv ′ , the model should predict
whether there is a potential edge existing between them. We used
MRR (mean reciprocal rank) [32] to evaluate the performance of
link prediction. Specifically, for a node v and |Q | sets of nodes
to be predicted, the MRR score can be calculated by the set of
prediction queries/lists in Q with 1

|Q |

∑ |Q |

i=1
1

ranki
, where ranki is

the place of the first correct prediction. We compared PGE with
GraphSAGE as we did not find the evaluation method for link
prediction in DeepWalk, node2vec and GCN. For the sparse citation
graph PubMed, we set the epoch number to 10 to avoid the data
insufficiency problem. For other datasets, the epoch number was
set to 1. As for the biases bd and bs and the clustering methods, they
are the same as in the node classification experiment in Section 5.1.

Table 3 reports the MRR scores of PGE and GraphSAGE for the
four datasets. We also created a variant of PGE by only considering
bias (i.e., the edge information was not used). The results show that
without considering the edge information, PGE records lower MRR
scores than GraphSAGE except for PPI. However, when the edge
information is incorporated, PGE significantly outperforms Graph-
SAGE in all cases and the MRR score of PGE is at least 37% higher
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Figure 2: The effects of bias values and cluster number (best viewed as 2D color images)

than that of GraphSAGE. According to the MRR score definition,
the correct prediction made by PGE is 1 to 3 positions ahead of
that made by GraphSAGE. Compared with the improvements made
by PGE for node classification, its improvements for link predic-
tion are much more convincing, which can be explained as follows.
Differentiating between neighboring nodes may not have a direct
effect on predicting a link between two nodes; rather, the use of
edge information by PGE makes a significant difference compared
with GraphSAGE and the variant of PGE, as the latter two do not
use edge information.

5.3 Parameter Sensitivity Tests
In this set of experiments, we evaluated the effects of the parameters
in PGE on its performance.

5.3.1 Effects of the Epoch Number. To test the effects of the number
of training epochs, we compared PGE with GraphSAGE by varying
the epoch number from 10 to 100. We report the F1-Micro and F1-
Macro scores for node classification on the four datasets in Figure 1.
The results show that PGE and GraphSAGE have similar trends in
F1-Micro and F1-Marco, although PGE always outperforms Graph-
SAGE. Note that the training time increases linearly with the epoch
number, but the training time for 100 epochs is also only tens of
seconds (for the small dataset PubMed) to less than 5 minutes (for
the largest dataset Reddit).

5.3.2 Effects of Biases and Cluster Number. We also tested the
effects of different bias values and the number of clusters. We ran
PGE for 1,000 times for node classification on PPI, using different
number of clusters k and different values of bd (by fixing bs = 1).
We used K-Means for Step 1 since it is flexible to change the value



k . The number of training epochs was set at 10 for each run of PGE.
All the other parameters were set as their default values.

Figure 2 reports the results, where the X -axis shows the number
of clusters k , the Y -axis indicates the logarithmic value (with the
base e) of bd , and the Z -axis is the F1-Micro score (F1-Macro score
is similar and omitted). The results show that taking a larger bias bd
(i.e.,Y > 0) can bring positive influence on the F1-score independent
of the cluster number k , and the performance increases as a larger
bd is used. When bd is less than 1, i.e., bd < bs , it does not improve
the performance over uniform neighbor sampling (i.e., bd = bs or
Y = 0). This indicates that selecting a larger number of dissimilar
neighbors (as a larger bd means a higher probability of including
dissimilar neighbors into Gs ) helps improve the quality of node
embedding, which is consistent with our analysis in Section 4.

For the number of clusters k , as the average degree of the PPI
graph is 14.38, when the cluster number is more than 50, the F1-
score becomes fluctuating to k (i.e., the shape is like waves in
Figure 2). This phenomenon is caused by the limitation of the
clustering algorithm, since K-Means is sensitive to noises and a
large k is more likely to be affected by noises. Note that when the
cluster number is not large (less than 50), a small bias bd (less than
1) may also improve the F1-score, which may be explained by the
fact that there are homophily and structural equivalence features in
the graph, while bd < 1 indicates that nodes tend to select similar
neighbors to aggregate. In general, however, a large bd and a small
cluster number k (close to the average degree) are more likely to
improve the performance of the neighborhood aggregation method.

6 CONCLUSIONS
We presented a representation learning framework, called PGE, for
property graph embedding. The key idea of PGE is a three-step
procedure to leverage both the topology and property information
to obtain a better node embedding result. Our experimental results
validated that, by incorporating the richer information contained
in a property graph into the embedding procedure, PGE achieves
better performance than existing graph embedding methods such
as DeepWalk [30], node2vec [16], GCN [22] and GraphSAGE [18].
PGE is a key component in the GNN library of MindSpore — a
unified training and inference framework for device, edge, and
cloud in Huawei’s full-stack, all-scenario AI portfolio — and has a
broad range of applications such as recommendation in Huawei’s
mobile services, cloud services and 5G IoT applications.
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