
G-thinker: Big Graph Mining Made Easier and Faster

Da Yan§†1, Hongzhi Chen§2, James Cheng§3, M. Tamer Özsu‡4, Qizhen Zhang§5, John C. S. Lui§6

§Department of Computer Science and Engineering, The Chinese University of Hong Kong
{1yanda, 2hzchen, 3jcheng, 5qzzhang, 6cslui}@cse.cuhk.edu.hk

†Department of Computer and Information Sciences, The University of Alabama at Birmingham
1yanda@uab.edu

‡David R. Cheriton School of Computer Science, University of Waterloo
4tozsu@uwaterloo.ca

Abstract

This paper proposes a general system for computation-
intensive graph mining tasks that find from a big graph all
subgraphs that satisfy certain requirements (e.g., graph
matching and community detection). Due to the broad
range of applications of such tasks, many single-threaded
algorithms have been proposed. However, graphs such as
online social networks and knowledge graphs often have
billions of vertices and edges, which requires distributed
processing in order to scale. Unfortunately, existing dis-
tributed graph processing systems such as Pregel and
GraphLab are designed for data-intensive analytics, and
are inefficient for computation-intensive graph mining
tasks since computation over any data is coupled with
the data’s access that involves network transmission. We
propose a distributed graph mining framework, called
G-thinker, which is designed for computation-intensive
graph mining workloads. G-thinker provides an intuitive
graph-exploration API for the convenient implementa-
tion of various graph mining algorithms, and the runtime
engine provides efficient execution with bounded mem-
ory consumption, light network communication, and par-
allelism between computation and communication. Ex-
tensive experiments were conducted, which demonstrate
that G-thinker is orders of magnitude faster than existing
solution, and can scale to graphs that are two orders of
magnitude larger given the same hardware resources.

1 Introduction

We focus on a class of graph mining problems, namely
subgraph finding problems, which aim to find all sub-
graphs in a graph that satisfy certain requirements. It
may enumerate (or count) all of the subgraphs, or find
only those subgraphs with top-k highest scores, or sim-
ply output the largest subgraph. Examples of sub-
graph finding problems include graph matching [12],
maximum clique finding [26], maximal clique enumer-

ation [1], quasi-clique enumeration [13], triangle list-
ing and counting [9], and densest subgraph finding [11].
These problems have a wide range of applications in-
cluding social network analysis [17, 20], searching
knowledge bases [10, 27] and biological network inves-
tigation [8, 33]. Although many serial algorithms have
been proposed to solve these problems, they cannot scale
to big graphs such as social networks and knowledge
graphs. Moreover, it is non-trivial to extend these al-
gorithms for parallel processing, because (1) the input
graph itself may be too big to fit in the memory of one
machine, (2) a serial algorithm checks subgraphs using
backtracking, where only one candidate subgraph is con-
structed (incrementally from the previous candidate sub-
graph) and examined at a time; a parallel algorithm that
checks many subgraphs simultaneously in memory many
cause memory overflow. The issue is further complicated
in the distributed setting due to the high cost of accessing
large amounts of remote data.

A plethora of distributed systems have been devel-
oped recently for processing big graphs [29], but most of
them adopt a think-like-a-vertex style (or, vertex-centric)
computation model [3, 7, 22, 31] which is pioneered by
Google’s Pregel [15]. These systems only require a pro-
grammer to specify the behavior of one generic vertex
(e.g., sending messages to other vertices) when develop-
ing distributed graph algorithms, but the resulting pro-
grams are usually data-intensive. Specifically, the pro-
cessing of each vertex is triggered by incoming mes-
sages sent (mostly) from other machines, and the CPU
cost of vertex processing is negligible compared with the
communication cost of message transmission. Moreover,
subgraph finding problems operate on subgraphs rather
than individual vertices, and it is unnatural to translate a
subgraph finding problem into a vertex-centric program.

As a result, big graph analytics research mostly fo-
cuses on problems that naturally have a vertex-program
implementation, such as PageRank and shortest path,
and few work has been devoted to large-scale subgraph

ar
X

iv
:1

70
9.

03
11

0v
1

 [
cs

.D
C

]
 1

0
Se

p
20

17

finding. To our knowledge, only two existing systems,
NScale [19] and Arabesque [24], attempted to attack
large-scale subgraph finding with a subgraph-centric pro-
gramming model. Unfortunately, their execution engines
still mine subgraphs in a data-intensive manner. Specif-
ically, they construct all candidate subgraphs in a syn-
chronous manner (i.e., large subgraphs are constructed
from small ones), before the actual computation that ex-
amines these subgraphs. Materializing candidate sub-
graphs incurs large network and storage overhead (while
CPU is under-utilized), and the actual computation-
intensive mining process is delayed until the costly sub-
graph materialization is completed.

Another critical drawback of existing distributed
frameworks is that they process each individual subgraph
as an independent task, which loses many optimization
opportunities. For example, if multiple subgraphs on
a machine contain a common vertex v, their tasks may
share v’s information (e.g., adjacent edges). But in exist-
ing systems, each subgraph will maintain its own copy of
v’s information (likely received from another machine),
leading to redundant communication and storage. The
synchronous execution model of existing systems is also
prone to the straggler problem, due to imbalanced work-
load distribution among different machines.

In this paper, we identify the following five require-
ments that a distributed system for subgraph finding
should satisfy in order to be efficient and user-friendly:

• The programming interface should be subgraph-
centric.

• Computation-intensive processing should be na-
tive to the programming model. For example, a pro-
grammer should be able to backtrack a portion of
graph to examine candidate subgraphs like in a se-
rial algorithm, without materializing and transmit-
ting any subgraph.

• There should exist no global synchronization
among the machines, i.e., the processing of different
portions of a graph should not block each other.

• Since a subgraph finding algorithm checks many
(possibly overlapping) subgraphs whose cumulative
volume can be much larger than the input graph it-
self, it is important to schedule the subgraph-tasks
properly to keep the memory usage bounded at
any point of time.

Obviously, each machine should stream and process
its subgraphs on its local disk (if memory is not suf-
ficient), to minimize network and disk IO overhead.

• Subgraphs on a machine that contain a common ver-
tex v should be able to share v’s information (e.g.,

adjacent edges), to avoid redundant data trans-
mission and storage.

Based on these criteria, we designed a novel subgraph-
centric system, called G-thinker, as a unified framework
for developing scalable algorithms for various subgraph
finding problems. To write a G-thinker program, a user
only needs to specify how to grow a portion of the in-
put graph g by pulling g’s surrounding vertices, and
how to process g (e.g., by backtracking). Communica-
tion and execution details in G-thinker are transparent
to end users. In G-thinker, each machine only keeps
and processes a small batch of tasks in memory at any
time (to achieve high throughput through task batching
while keeping memory usage bounded). Subgraphs that
are waiting to be processed (e.g., to grow its frontier by
pulling remote vertices) are buffered in a disk-based pri-
ority queue. The priority queue is organized by a min-
hashing based task scheduling strategy, in order to maxi-
mize the opportunity that the processing of different sub-
graphs share common vertices (including their adjacent
edges) that are cached in the local machine.

We have used G-thinker to develop significantly more
efficient and scalable solutions for a number of subgraph
finding problems, including triangle counting, maximum
clique finding, and graph matching. Compared with ex-
isting systems, G-thinker is up to hundreds of times faster
and scales to graphs that are two orders of magnitude
larger given the same hardware resources.

The rest of this paper is organized as follows. We mo-
tivate the need of a computation-intensive subgraph find-
ing framework with the problem of maximal clique enu-
meration in Section 2, and then explain why existing sys-
tems are inefficient in Section 3. Section 4 provides an
overview of the design of G-thinker, Section 5 introduces
the programming interface of G-thinker, and Section 6 il-
lustrates how to write application programs in G-thinker.
We present the implementation of G-thinker in Section 7,
and report experimental results in Section 8. Finally, we
conclude the paper in Section 9.

2 A Motivating Example

A common feature of subgraph finding problems is that,
the computation over a graph G can be decomposed into
that over subgraphs of G that are often much smaller
(called decomposed subgraphs), such that each result
subgraph is found in exactly one decomposed subgraph.
In other words, the decomposed subgraphs partition the
search space and there is no redundant computation. We
illustrate by considering maximal clique enumeration,
which serves as our running example. Table 1 summa-
rizes the notations used throughout this paper.

2

Table 1: Notation Table
Notation Meaning
G = (V, E) G is the input graph, with vertex (edge) set V (E)

vi The i-th vertex of G
Gi A decomposed subgraph of G seeded from vi
Γ(v) The set of neighboring vertices of v
Γgt(v) Neighbors of v whose vertex IDs are larger than v’s
𝕎 The set of all workers
|𝕎| The total number of workers
Wi The i-th worker

Tlocal The local vertex table of a worker
v ji The i-th vertex in Tlocal of worker Wj

Tcache LRU cache of a worker to keep remote vertices
maxΓ(v) The vertex in Γ(v) with the largest ID

P(t) Vertices that task t needs to pull from remote machines

Example: Maximal Clique Enumeration. We decom-
pose a graph G = (V,E) into a set of G’s subgraphs
{G1,G2, . . . ,Gn}, where Gi is constructed by expanding
from a vertex vi ∈ V . Let us denote the neighbors of a
vertex v by Γ(v). If we construct Gi as the subgraph in-
duced by {vi}∪Γ(vi) (Gi is called vi’s 1-ego network),
then we can find all cliques from these 1-ego networks
since any two vertices in a clique must be neighbors of
each other. However, a clique could be double-counted.

Let us define Γgt(v) = {u ∈ Γ(v) |u > v} where ver-
tices are compared according to their IDs. To avoid
redundant computation, we redefine Gi as induced by
{vi} ∪ Γgt(vi), i.e., Gi does not contain any neighbor
v j < vi. This is because any clique containing both vi
and v j has already been computed when processing G j.
Obviously, any clique C (let the smallest vertex in C be
vi) is only computed once, i.e., when Gi is processed.

We can distribute these decomposed subgraphs to dif-
ferent machines, so that each decomposed subgraph is
processed using a serial backtracking algorithm to find
cliques without network communication. Since the com-
putation complexity of maximal clique enumeration is
exponential to graph size, the computation cost of pro-
cessing Gi is super-linear (to Gi’s size) with a small
constant (i.e., computation-intensive), while the trans-
mission cost of creating Gi is linear with a large con-
stant (due to limited network transmission rate). Thus,
the computation cost and communication cost strike a
balance when Gi is sufficiently large, and overlapping
computation and communication over decomposed sub-
graphs significantly improves the overall performance.

However, since real graphs often follow power-law de-
gree distribution, there may exist some vertex vi with
a very high degree, thus generating a large Gi. Due
to high computational complexity, the machine process-
ing Gi may becomes the straggler that keeps processing
Gi while other machines finish their tasks and become
idle. To tackle this problem, a system should allow Gi
to be further decomposed, so that the resulting decom-
posed subgraphs can be distributed to different machines

for processing. In maximal clique enumeration, we can
decompose Gi exactly as how we decompose G, condi-
tioned on that vi is already in any clique found therein.
The decomposition may recurse by looking at more ver-
tices until the resulting subgraphs are small enough for
balanced workload distribution.

As we shall see in Section 6, the above ideas general-
ize to numerous subgraph finding problems.

3 Limitations of Related Work

In this section, we review existing distributed solutions
to subgraph finding, and explain their weaknesses.

Vertex-Centric In-Memory Solutions. Most vertex-
centric systems are in-memory systems, where vertices
(along with their adjacency lists) are partitioned among
different machines in a cluster and kept in memory [3,
14, 6, 7, 22, 31]. Vertices communicate with each other
by message passing, and messages are also buffered in
memory to avoid slow disk access.

However, the vertex-centric API is not suitable for
subgraph finding, and each vertex vi needs to communi-
cate with its surrounding vertices in a breadth-first man-
ner (one more hop per iteration) to get their information
for constructing Gi. The solution cannot scale to large
graphs since the total volume of (possibly overlapping)
decomposed subgraphs may easily exceed the memory
capacity of a cluster. Vertex-centric systems also do not
provide any mechanism for decomposed subgraphs to
share common vertex’s information1.

The key problem is, nevertheless, that vertex-centric
computation is mainly for data-intensive computation,
and generates a large number of messages to transmit
for subgraph finding (e.g., for pulling vertices to con-
struct decomposed subgraphs). We call the problem as
communication-in-the-chain. In fact, [32] indicates
that a vertex-centric program is most scalable if each it-
eration requires linear computation and communication
cost, and it runs for a small number of iterations. This es-
sentially implies that vertex-centric systems are for graph
problems with a low computational complexity.

Vertex-Centric Disk-Based Solutions. The prohibitive
memory requirement can be eliminated using a disk-
based system. For example, MapReduce [4] can be used
to simulate vertex-centric graph computation (e.g., mes-
sage sending & receiving) [18], and Pregelix [2] trans-
lates a vertex-centric program into a dataflow execu-
tion plan for out-of-memory processing. However, the
large amount of intermediate data (including messages
and subgraphs) need to be dumped to disk and then

1Pregel’s message combiner [15] does not help, since it is to ag-
gregate messages towards the same target vertex, while we consider
getting information from the same source vertex.

3

loaded back for each iteration of synchronous compu-
tation, making the running time prohibitive. We call
the problem as disk-in-the-chain, which adds upon the
communication-in-the-chain problem already suffered
by a vertex-centric model. In fact, MapReduce even
writes intermediate data to Hadoop Distributed File Sys-
tem (HDFS), which is much slower than local disk writes
since HDFS replicates each data block on three machines
for fault tolerance (termed the remote write problem).

These synchronous frameworks also prevent the
computation-intensive processing of decomposed sub-
graphs from beginning until all decomposed subgraphs
are synchronously constructed, leading to CPU under-
utilization. Data sharing among subgraphs is also not
possible since a subgraph is processed by a reducer.

Systems with Subgraph-Based API. Recently,
NScale [19] and Arabesque [24] attempted to attack sub-
graph finding problems through a subgraph-based API
rather than a vertex-centric one. Albeit becoming more
user-friendly, the execution engines of these systems still
perform data-intensive processing like vertex-centric
solutions mentioned before, and they actually introduce
new performance issues.

NScale [19] uses the MapReduce solution we men-
tioned above, and it brings additional overheads. NScale
only supports the top-level decomposed subgraphs, and
there is no mechanism to balance workload through re-
cursive decomposition. Assuming that each Gi spans
the k-hop neighborhood around vi, then NScale first
constructs all decomposed subgraphs using k rounds of
MapReduce. The large number of decomposed sub-
graphs are then packed into larger compact subgraphs,
each of which can fit in the memory of a reducer. Vertices
common to multiple decomposed subgraphs are stored
only once in their packed subgraph. Finally, each com-
pact subgraph is distributed to a reducer, which processes
all decomposed subgraphs packed in the compact sub-
graph in memory. Obviously, NScale suffers from all
the performance issues of a MapReduce-based vertex-
centric solution; moreover, NScale further packs decom-
posed subgraphs through expensive disk-based compu-
tation, and it is very likely that the cost of packing Gi
already surpasses that of processing Gi right after it is
constructed in memory.

Arabesque [24] proposed an embedding-centric model
where an embedding is a subgraph of the input graph
G. Arabesque requires the entire G to reside in the
memory of every machine, and constructs and processes
subgraphs iteratively. In the i-th iteration, it grows the
set of embeddings with i edges/vertices by one adja-
cent edge/vertex, to construct embeddings with (i+ 1)
edges/vertices for processing. New embeddings that
pass a filtering condition are further processed and then
passed to the next iteration. For example, to find cliques,

the filtering condition checks whether an embedding e is
a clique; if so, e is reported and passed to the next itera-
tion to grow larger clique candidates.

Unfortunately, Arabesque suffers from new perfor-
mance and scalability issues. Firstly, while previ-
ous solutions still permit efficient backtracking within
each decomposed subgraph, Arabesque materializes and
transmits every single candidate subgraph it exam-
ines. Arabesque also compresses/decompresses the large
number of materialized embeddings using a data struc-
ture called ODAG to save space, which consumes ad-
ditional CPU cycles. To additionally support frequent
subgraph pattern mining, automorphism checking is per-
formed for every newly-expanded embedding to avoid
generating duplicate embeddings, which adds unneces-
sary overhead for subgraph finding. Finally, since G re-
sides in the memory of every machine, scalability is lim-
ited by the memory space of a single machine.
Other Systems. Blogel [30] and Giraph++ [25] pro-
posed a block-centric model which partitions a graph into
disjoint subgraphs called blocks to be distributed among
machines for iterative processing, eliminating the need of
communication inside each block. However, these sys-
tems do not target subgraph finding problems, but rather
the acceleration of vertex-centric models.

4 System Overview

We now overview the design of G-thinker, including its
programmming model and system components.
Programming Model. G-thinker performs computation
on subgraphs. Each subgraph g is associated with a task,
which performs computation on g and grows g when
needed. G-thinker grows subgraphs starting from a set of
seed vertices in V . For example, in clique enumeration,
one may create a task from each vertex vi ∈ V , which
forms the initial subgraph g containing only vi; the task
grows g into Gi by pulling vertices in Γgt(vi) along with
their adjacent edges, and then enumerates cliques in Gi.
In case Gi is too big, users may instead further decom-
pose Gi and create new tasks associated with the newly
decomposed subgraphs, which can then be distributed to
different machines to improve load balancing.
G-thinker Components. A G-thinker program runs on
a cluster of workers, W = {W1,W2, . . .}, where each
worker is a basic computing unit that processes its as-
signed tasks in serial, and a machine may run multi-
ple workers. Each worker alternates between subgraph-
centric task computation and vertex pulling (into sub-
graphs), both are processed in batches. To be memory ef-
ficient, we keep the memory requirement of each worker
at approximately O(davg · |V ||W|), where davg is the average
vertex degree.

4

v1
1

v1
2

v1
3

...

t1 t2 … … tk

Local Table Tlocal

v2
1

v3
2

…
 … …

Vertex Cache Tcache

Active Tasks

... Q

Task Queue

adj-list

adj-list

adj-list

adj-list

adj-list

v3
5 v1

2 …

Figure 1: Components of Worker W1

G-thinker partitions the vertices in V (along with
their adjacency lists) among different workers, and each
worker maintains its assigned vertices in a local table
Tlocal . Let us denote the i-th vertex maintained in Tlocal
of worker Wj by v j

i . Figure 1 shows the components
of W1, where we can see that Tlocal maintains vertices
v1

1,v
1
2,v

1
3, . . .; each vertex also keeps its neighbors in its

adjacency list, so that it can pull its neighbors (along with
their adjacency lists) from Tlocal of other workers, by pro-
viding the neighbor IDs. The local tables of all work-
ers collectively constitute a distributed key-value store
where key is the ID of a vertex v and value is v’s adja-
cency list Γ(v).

When a vertex is pulled (along with its adjacency list)
from another worker, it is not directly added to the sub-
graph of the requesting task; instead, it is put in an LRU
cache Tcache. The cache keeps the non-local vertices (i.e.,
not in Tlocal) that are previously received, so that a non-
local vertex can be shared by all the tasks that pull it. It
is up to the user to decide whether the task’s subgraph
should be updated, and if so, what information of that
vertex should be added to the subgraph.

As Figure 1 shows, W1’s Tcache keeps non-local ver-
tices v2

1,v
3
2, . . . (along with their adjacency lists), which

are pulled by local tasks previously executed at W1. Note
that the adjacency list of a non-local vertex may contain
a local vertex, such as v1

2 in the adjacency list of vertex
v3

2 in Tcache in Figure 1.
During subgraph-centric computation, when a task re-

quires the adjacency list of a vertex u, if u is in Tlocal or
Tcache, the task can directly obtain Γ(u) by table lookup.
Otherwise, the task needs to first pull u from Tlocal of u’s
worker into the cache table Tcache, before accessing it.

As Figure 1 shows, each worker also maintains an in-
memory task buffer for keeping tasks that are currently
being processed, and a disk-based task queue for keep-
ing tasks that are waiting to be processed. This design
allows tasks to be processed with high throughput and
less redundant communication, as we shall discuss next.

Batch Processing & Communication Reduction. A
task usually only generates a small number of pull-
requests at a time, and sending small messages wastes
network bandwidth. Therefore, in G-thinker, a worker
fetches a batch of tasks from the disk-based task queue

at each time, sends their pull-requests together, receives
all the requested vertices, and then processes these tasks.
Tasks that need to pull more vertices are then added to
the task queue for further processing.

Batch processing hides the round-trip delay of each
task’s pull-requests, since if tasks are processed one at a
time, each task needs to wait for its requested vertices to
arrive, which wastes CPU cycles. Batch processing also
reduces redundancy in communication. Specifically, if
many tasks in a batch pull a remote vertex u, only one
pull-request needs to be sent, and 〈u,Γ(u)〉 will be re-
ceived only once and cached in Tcache for access by all
these tasks. This is in contrast to existing solutions like
NScale, where 〈u,Γ(u)〉 needs to be transmitted to every
subgraph g that requires it. We organize the task queue Q
using locality sensitive hashing (detailed in Section 7), to
increase the probability that tasks fetched from Q share
common vertices to pull.

To further reduce communication, G-thinker allows a
user to prune useless items in Γ(v) before responding
〈v,Γ(v)〉 to a worker that pulls v. For example, in clique
enumeration, a vertex v only needs to respond to a pull-
request with Γgt(v) instead of the entire Γ(v).

Memory Cost Analysis. Since G-thinker partitions the
vertices evenly among the workers, Tlocal of each worker
contains around O(|V |/|W|) vertices. To keep the mem-
ory consumption bounded by O(davg · |V |/|W|), we also
set the capacity of Tcache to cache at most O(|V |/|W|)
vertices at any time, and vertex eviction is based on the
LRU (Least Recently Used) policy. As for the memory
requirement of tasks, since each task keeps a subgraph
g, one cannot afford to keep all tasks in memory (e.g.,
consider all maximal cliques of a graph). Our solution is
to keep only a small number (e.g., 1000) of active tasks
in memory for batch processing, so that their small sub-
graphs consume O(davg · |V |/|W|) memory space.

Computation & Communication Cost Analysis. Each
task in G-thinker (1) pulls required vertices to its sub-
graph (linear communication cost, and pull requests can
further be shared with other tasks) and (2) then performs
higher-complexity computation on the subgraph in local
machine. Step (2) is computation-intensive and avoids
any communication when exploring the large search
space by backtracking.

To overlap communication (i.e., Step (1)) with com-
putation (i.e., Step (2)), G-thinker treats tasks indepen-
dently. Different tasks can have different progress, and
no synchronization among all machines is required. G-
thinker proceeds the computation of a task as long as all
its requested vertices are locally accessible, and the only
communication type in G-thinker is point-to-point com-
munication between two workers for vertex pulling, and
dynamic task (or decomposed subgraph) reassignment if

5

Task <I, C, V, E>
Fields:

Subgraph g
C context

Functions:
pull(neighbor)

bool compute(vertex_frontier)
//UDF:

Worker <Task>
Functions:

run(config_info)

seedTask_gene(vertex)
//UDF:

Vertex respond(vertex)

add_task(task)

add_task(task)

Figure 2: Programming Interface of G-thinker

4

A
C

b
3
c

2
b

1
a B

3
c

1
a
B

2
b
A

4
b
C

< I >

< V >

< E >

Adj-list

Figure 3: Data Types in G-thinker

load balancing is enabled.

5 Programming Interface

G-thinker is written in C++, and it defines two important
base classes, Task and Worker, as sketched in Figure 2.
To write a G-thinker program, a user needs to subclass
Task and Worker with their template arguments properly
specified, and implement their abstract functions accord-
ing to the application logic; these functions are called
user-defined functions (UDFs). We remark that although
we use C++ terminology here such as “template”, the
API is general enough to be implemented in any object-
oriented language (e.g., “generic types” in Java).
Data Types. As Figure 2 shows, the Task class takes
four template arguments <I>, <C>, <V> and <E>.
Among them, <I>, <V> and <E> specify the data
types of vertices and edges: (1) <I>: the type of ver-
tex ID; (2) <V>: the type of vertex attribute; (3) <E>:
the type of the attribute of an adjacency list item. Other
system-defined types (e.g., those for subgraph, vertex,
and adjacency list) are automatically derived by G-
thinker from them, and can be directly used in the UDFs
once a user specifies these three template arguments.

Figure 3 illustrates the inferred system-defined types.
Specifically, a subgraph is shown on the left, which con-
sists of a table of vertices (stored with their adjacency
lists). The structure of Vertex 3 is shown on the right,
where the vertex is stored with its ID (of type <I>) and
a vertex label “c” (of type <V>), and an adjacency list.
Each item in the adjacency list is stored with a neighbor
ID (of type <I>) and an attribute (of type <E>) indi-
cating the label of the neighbor and the edge label. For
example, the first item corresponds to Vertex 1 with label
“a”, and the edge label of (3,1) is “B”. Attributes (i.e.,
<V> and <E>) are optional and are not needed for find-
ing subgraphs with only topology constraints (e.g., trian-
gles, cliques, and quasi-cliques).

The Task class. The Task class has another template ar-
gument <C> that specifies the type of context informa-
tion for a task t, which can be, for example, t’s iteration
number (a task in G-thinker proceeds its computation in
iterations). Each Task object t maintains a subgraph g
and the user-specified context object (of type <C>). The
Task class has only one UDF, t.compute(frontier), where
the input frontier keeps the set of vertices requested by t
in its previous iteration. Each element of frontier is ac-
tually a pointer to a vertex object in Tlocal or Tcache. Of
course, users may also access t’s subgraph and context
object in compute(frontier).

UDF compute(frontier) specifies how a task computes
for one iteration. If t.compute(.) returns true, t needs to
be processed by more iterations; otherwise, t’s computa-
tion is finished after the current iteration. In G-thinker,
when t is fetched from the task queue for processing,
t.compute(.) is executed repeatedly until either t is com-
plete, or t needs a non-local vertex v that is not cached in
Tcache, in which case t is added to the task queue waiting
for all t’s requested vertices to be pulled. When a task
is completed or queued to disk, G-thinker automatically
garbage collects the memory space of the task to make
room for the processing of other tasks.

Inside t.compute(.), a user may access and update g
and context, and call pull(u) to request vertex u for use
in t’s next iteration. Here, u is usually in the adjacency
list of a previously pulled vertex, and pull(u) expands
the frontier of g. To improve network utilization, g is
usually expanded in a breadth-first manner, so that each
call of compute(.) generates pull-requests for all relevant
vertices adjacent to g’s growing frontier. A user may also
call add task(task) in t.compute(.) to add a newly-created
task to the task queue.

The Worker Class. Each object of the Worker class cor-
responds to a worker that processes its assigned tasks in
serial. Figure 2 shows the key functions of the Worker
class, including two important UDFs.

UDF seedTask gene(v) specifies how to create tasks
according to a seed vertex v ∈ Tlocal . A worker of G-
thinker starts by calling seedTask gene(v) on every v ∈
Tlocal , to generate seed tasks and to add them to the disk-
based task queue. Inside seedTask gene(v), users may
examine the adjacency list of v, create tasks accordingly
(and may let each task pull neighbors of v), and add these
tasks to the task queue by calling add task(.).

UDF respond(v) is used to prune Γ(v) before sending
it back to requesting workers. By default, respond(v) re-
turns NULL and G-thinker directly uses the vertex object
of v in Tlocal to respond. Users may overload respond(v)
to return a newly created copy of v, with items in Γ(v)
properly pruned to save communication (e.g., Γgt(v) for
clique enumeration). In this case, G-thinker will respond
by sending the new object and then garbage-collect it.

6

The worker class also contains formatting UDFs, e.g.,
for users to define how to parse a line in the input file on
HDFS into a vertex object in Tlocal , which will be used
during graph loading.

To run a G-thinker program, one may subclass Worker
with all UDFs properly implemented, and then call
run(config info) to start the job, where config info con-
tains job configuration parameters such as the HDFS file
path of the input graph.

The Aggregator Class. The Worker class optionally ad-
mits a second template argument <aggT>, which needs
to be specified if aggregator is used to collect some statis-
tics such as triangle count or maximum clique size. Each
task can aggregate a value to its worker’s local aggrega-
tor when it finishes. These locally aggregated values can
either be globally aggregated at last when all workers fin-
ish computing their tasks (which is the default setting), or
be periodically synchronized (e.g., every 10 seconds) to
make the globally aggregated value available to all work-
ers (and thus all tasks) timely for use (e.g., in compute(.)
to prune search space). In the latter case, users need to
provide a frequency parameter.

6 Applications

We consider two categories of applications: (1) finding
dense subgraph structures such as triangles, cliques and
quasi-cliques, which is useful in social network analy-
sis and community detection; (2) graph matching, which
is useful in applications such as querying semantic net-
works and pattern recognition.

For simplicity, we only consider top-level task decom-
position, i.e., we grow each vertex vi ∈V into exactly one
decomposed subgraph Gi, and every qualified subgraph
will be found in exactly one decomposed subgraph.

Triangle Counting. Assume that for any vertex v, neigh-
bors in Γ(v) are already sorted in increasing order of ver-
tex ID (e.g., during graph loading). We also denote the
largest (i.e., last) vertex in Γ(v) by maxΓ(v).

We want each triangle 4v1v2v3 (w.l.o.g., v1 < v2 <
v3) to be counted exactly once, i.e., in v1’s decom-
posed subgraph. We let v1 count 4v1v2v3 by checking
whether v3 ∈ Γ(v2). Since v1 only examines Γ(v2) for
every neighbor v2 with v1 < v2 < v3, v1 only needs to
pull the adjacency list of every neighbor in (Γgt(v1)−
{maxΓ(v1)}). Also, since Γ(v2) is only checked against
v3 > v2, v2 only needs to respond Γgt(v2) to v1.

According to the above discussion, among the UDFs
of Worker, respond(v2) creates a copy of v2 with adja-
cency list Γgt(v2) for responding; if |Γgt(v1)| ≥ 2, seed-
Task gene(v1) creates a task t for v1 and let t pull every
vertex in (Γgt(v1)−{maxΓ(v1)}). The context of t keeps
maxΓ(v1) and a triangle counter count (initialized as 0).

d

b

b

ca
① ②

③

④

⑤
ba c

b

b

b

d

d

1 2

3

4 5

6

7

8
(a) Query Graph (b) Data Graph

b

ca
① ②

③

(c) Twigs

d

b

b

c
②

③

④

⑤

Figure 4: An Example of Graph Matching

In t.compute(frontier), frontier contains all the pulled
vertices (i.e., v2) in increasing order of their IDs as they
were requested in seedTask gene(v1). We check every
v2 ∈ frontier as follows. For each v2, we loop through
all vertices v3 > v2 in Γgt(v1) (Γgt(v1) is obtained by ap-
pending maxΓ(v1) in t’s context to frontier), and incre-
ment t’s counter if v3 ∈ Γ(v2). Finally, compute(.) re-
turns false since we have checked all (v2,v3) pairs and
the task is finished.

Whenever a task t is finished, its counter (in t’s con-
text) is added to the locally aggregated value, and when
all workers finish computation, these local counts are
sent to the master to get the total triangle count.

Maximum Clique. We adapt the serial backtracking
algorithm of [26] to G-thinker. The original algorithm
maintains the size of the maximum clique currently
found, denoted by |Qmax|, to prune the search space.

To allow timely pruning, each worker in our G-thinker
program maintains |Qmax| and keeps it relatively up to
date by periodic aggregator synchronization, so that if a
worker discovers a larger clique and updates |Qmax|, the
value can be synchronized to other workers timely to im-
prove their pruning effectiveness. In seedTask gene(vi),
we create a task t whose graph g contains vi, and we let
t pull all vertices in Γgt(vi). Then in t.compute(frontier),
we collect vertices in frontier (i.e., Γgt(vi)), add them
to g but filter those adjacency list items that are not in
{vi}∪Γgt(vi), to form the decomposed subgraph Gi, and
then run the algorithm of [26] on Gi.

This solution can be easily extended to find quasi-
cliques, where in a quasi-clique, every vertex is adja-
cent to at least γ (≥ 0.5) fraction of other vertices. In
such a quasi-clique, two vertices are at most 2 hops
away [13]. The G-thinker algorithm is similar to that
for finding maximum clique, except that (1) for each lo-
cal seeding vertex vi, compute(frontier) runs for 2 iter-
ations to pull vertices (larger than vi) within 2 hops of
vi; (2) compute(frontier) then constructs Gi as the 2-hop
ego-network of vi and runs the quasi-clique algorithm
of [13] on Gi to compute the quasi-cliques.

Graph Matching. Graph matching finds all subgraph
instances in a data graph that match the query graph.

7

Consider the problem of finding all occurrences of the
query graph pattern given by Figure 4(a) in the data graph
shown in Figure 4(b). In this example, each vertex in the
query graph (and the data graph) has a unique integer ID
and a label. We define k1k2k3k4k5 as a mapping where
vertex with ID ki in the data graph is mapped to vertex i©
in the query graph. A mapping is a matching if vertex ki
and vertex i© have the same label (for any i), and for any
edge (i©, j©) in the query graph, the corresponding edge
(ki,k j) exists in the data graph. For example, 25478 is a
matching, while 25178 is not since the data graph does
not have edge (1,5) that corresponds to (3©, 2©).

Existing works on distributed graph matching com-
bine vertex-centric graph exploration with subgraph join.
Note that when a query graph contains cycles, vertex-
centric graph exploration alone is not sufficient. For ex-
ample, in Figure 4(b), suppose that we perform vertex-
centric exploration on the data graph along query graph
path 3©- 1©- 2©, we will explore from Vertex 1 (or 4)
to 2 and then to 5 simply according to neighbors’ la-
bels. Then, we need to check all b-labeled neighbors of
Vertex 5 to find Vertex 1 (or 4), which is essentially an
equi-join on the ID of k3 rather than a simple label-based
exploration. [23] and [5] first decompose a query graph
into small acyclic subgraphs called twigs (see Figure 4(c)
for an example), and then use graph exploration to find
subgraph instances that match those twigs, and join twigs
on joint vertices (e.g., k2 and k3 for Figure 4(c)) to obtain
the subgraphs that match the query graph.

Our algorithm avoids materializing matched sub-
graphs and performing distributed subgraph join as re-
quired by existing solutions. Instead, we pull required
vertices to construct each decomposed subgraph Gi, and
then simply enumerate the matched subgraph instances
in the decomposed graph using backtracking without
generating any communication.

We illustrate how to write a G-thinker program for the
query graph of Figure 4(a). Assume that each adjacency
list item contains vertex label2. We start the matching
from vertex 1© with label “a”, and grow Gi from each
vertex vi in the data graph with label “a”. Note that every
matched subgraph instance will be found since it must
contain an a-labeled vertex vi, and it will only be found
in vi’s decomposed subgraph Gi.

We now present our algorithm, which can be safely
skipped if you are not interested in reading the details.

The Algorithm: in seedTask gene(v), we only create a
task t for v if v’s label is “a”, and Γ(v) contains neighbors
with both labels “b” and “c”. If this is the case, we add
vertex v to g, and pull all vertices in Γ(v) with labels “b”
and “c”.

2If this is not the case, one may use the Pregel algorithm of [31] for
attribute broadcast to preprocess the graph data in linear cost.

Then, in iteration 1 of t.compute(frontier), we split
frontier into two vertex sets: Vb (resp. Vc) consists of ver-
tices with label “b” (resp. “c”). However, while a vertex
in Vc definitely matches vertex 2© in Figure 4(a), a vertex
in Vb may match either Vertex 3© or Vertex 4©. For each
vertex vc ∈ Vc, we split all vertices in Γ(vc) with label
“b” into two sets: U1 consisting of those vertices that are
also in Vb (i.e., they can match Vertex 3© or Vertex 4©),
and U2 consisting of the rest (i.e., they can only match
Vertex 4© since they are not neighbors of vc). We prune
vc, (i) if U1 = /0 since vc does not have a neighbor match-
ing Vertex 3©, or (ii) if |U1|= 1 and U2 = /0, since vc does
not have two neighbors with label “b”. Otherwise, (iii) if
|U1| = 1 and U2 6= /0, then the vertex in U1 has to match
Vertex 3©, and the vertex matching Vertex 4© has to be
from U2, and thus we pull all vertices of U2; while (iv) if
|U1| > 1, the vertex matching Vertex 4© can be from ei-
ther U1 or U2, and thus we pull all vertices from both U1
and U2. Let the only vertex (with label “a”) currently in
g be va, then in both Cases (iii) and (iv), we add vc and
edge (va,vc) to g, and for each vertex vb ∈U1 (i.e., vb can
match Vertex 3©), we add vb and edge (va,vb) to g.

Then in iteration 2 of t.compute(frontier), frontier con-
tains all pulled vertices with label “b” that can match
Vertex 4©. Let the set of all vertices with label “c” in
g (i.e., matching Vertex 2©) be Vc. Then, for each vertex
vb ∈ frontier, we denote the set of all vertices of Γ(vb)
with label “d” (i.e., matching Vertex 5©) be Vd ; if Vd 6= /0,
(1) we add vb to g, (2) for every vertex vc ∈ Vc ∩Γ(vb),
we add edge (vc,vb) (i.e., matching (2©, 4©)) to g, (3) for
every vertex vd ∈Vd , we add vd and edge (vb,vd) to g. Fi-
nally, we run a backtracking algorithm on g to enumerate
all subgraphs that match the query graph.

Lastly, we can let UDF respond(v) return a copy of v
by pruning items in Γ(v) whose labels do not fall into {a,
b, c, d} to save communication.

We remark that only top-level subgraphs decomposed
by Vertex 1© in the query vertex have been considered. If
a resulting decomposed subgraph Gi is still too big, one
may continue to decompose Gi by looking at one more
vertex in the query graph (given that Vertex 1© is already
matched to vi).

7 System Implementation

Task Queue & Task Buffers. Since tasks contain sub-
graphs that may overlap with each other, it is impracti-
cal to keep all tasks in memory. Thus, each worker of
G-thinker maintains a disk-based queue Q to keep those
tasks waiting to be processed. Figure 5 shows the pro-
cedure of task computation on a worker of G-thinker.
Specifically, tasks are fetched from the task queue Q one
at a time and added to a task buffer BT

in for batch process-

8

Task Queue Q

BQ
in

T1 T2
Tn

…

LQ [l1, r1] [l2, r2] [ln, rn]…
[1,2,3,4] t1
[1,2,3,5] t2
[1,2,4,5] t3

BQ
out

… …

ta

tb

tc…

BT
in

① Task Fetching

v1 Γ(v1)
v2 Γ(v2)Tcache … …

② Vertex Pulling

BT
out

ta

tb

tc…

③ Task Computing

Figure 5: Computation Framework of a Worker

ing, while the processed tasks (and those newly-created
by add task(.)) are appended to buffer BT

out and then
merged to Q in batches.

One baseline approach to organize Q is to treat it as a
local-disk stream of tasks, which allows tasks to be se-
quentially read from (and appended to) Q. To support
two-sided streaming, we organize tasks in Q with files
each containing C tasks, where C is a user-defined pa-
rameter (100 by default) to amortize the random IO cost
of reading (and writing) a task file. We call this queue
organization as stream-queue, which does not consider
whether tasks fetched into BT

in share common vertices to
pull. To increase the probability that tasks in BT

in share
common vertices to pull, we designed another queue or-
ganization called LSH-queue based on min-hashing.

Specifically, assume that a task t has called compute(.),
and let us denote the set of vertices that t needs to pull
from remote machines by P(t). Before adding t to Q, we
append a key k(t) to t, which consists of a sequence of `
(= 4 by default) MinHash signatures [21] of P(t). Due
to the locality sensitivity of min-hashing, for two tasks
t1 and t2, the more similar k(t1) and k(t2) are, the more
likely P(t1) and P(t2) overlap [21]. Therefore, we keep
tasks in Q ordered by their keys (in alphabetic order), so
that tasks fetched tasks from the head of Q have similar
keys (e.g., see BQ

out in Figure 5) and are likely to share
more common vertices to pull. Reducing redundancy by
ordering data according to min-hashing keys has been
shown to be effective by previous works [19, 16].

To avoid random disk IOs, we organize Q as depicted
in Figure 5. We maintain an in-memory buffer BQ

in to
receive incoming tasks (from BT

out), and an in-memory
buffer BQ

out to buffer ordered tasks to be fetched. The
waiting tasks on local disk are grouped into files, where
each file contains [C/2,C] tasks ordered by their keys and
C is a user-defined parameter. The ranges of keys in dif-
ferent files are disjoint (except at boundaries where keys
may be equal), and all task files are linked in the order of
key ranges by an in-memory doubly-linked list LQ. Each
element in LQ points to a task file and records its key

range. Here, LQ is like the leaf level of a B+-tree, but it
is small enough to be memory-resident since only meta-
data of files are kept. When BQ

in overflows, we merge all
its tasks to the list of task files efficiently by utilizing LQ

while guaranteeing that each file still contains [C/2,C]
tasks after merging, using a B+-tree style algorithm.

A computing thread fetches tasks one by one from BQ
out

for computation, and when BQ
out becomes empty, we load

to BQ
out those tasks in the first file of LQ if LQ is not empty;

otherwise, we fill BQ
out with tasks obtained from the head

of BQ
in. Since tasks in a file are clustered by their keys,

tasks in BQ
out tend to share common vertices to pull.

Task Computation. A worker of G-thinker processes
its tasks in rounds, where each round consists of three
steps, (1) task fetching, (2) vertex pulling, and (3) task
computing. Figure 5 illustrates these three steps.

The first step fetches tasks from Q into BT
in until either

(i) BT
in becomes full, or (ii) there is no more room in Tcache

to accommodate more vertices to pull. The second step
then pulls all requested vertices that are not already hit
in Tcache. Note that the pulling frequency is influenced
by the capacity of BT

in and Tcache. Now, for every task t ∈
BT

in, its requested vertices in frontier are either in Tlocal or
Tcache, and thus we start the third step to process the tasks
in BT

in. We compute each task t iteratively until either t
is complete, or there exists a newly-requested vertex that
is neither in Tlocal nor in Tcache. In the latter case, we
compute t’s key using P(t), and then add t to BT

out . If
new tasks are created by t, they are also added to BT

out .
Whenever BT

out is full, it merges its tasks to Q.
Since a machine runs multiple workers, and the in-

dependence of their execution allows computation and
communication to overlap.

Other Issues. Real graphs may contain some high-
degree vertex v, and the task seeded from v may have
|P(t)| larger than the capacity of Tcache. To allow such
a task to proceed, we treat t as a singleton task batch to
perform vertex pulling, by temporarily increase the ca-
pacity of Tcache. After t.compute(.) returns, we recover
the original capacity of Tcache by evicting overflowed ver-
tices, before starting the next round.

A worker initially seeds the tasks from all vertices
in Tlocal into Q, to maximize the opportunity of finding
tasks that share common vertices to pull. The seeded
tasks are merge-sorted by their min-hashing key to effi-
ciently create the file list of Q.

There exists some work that uses heuristics to esti-
mate the computation cost of a task t from its decom-
posed subgraph [28], and an online regressor may also
be trained to improve the cost estimation after each task
is finished. Since estimating the cost of t from a par-
tially grown subgraph is difficult, we only estimate t’s
cost when its decomposed subgraph is fully constructed.

9

Table 2: Graph Datasets (M = 1,000,000)
Dataset |V| |E| Triangle # |Qmax| # Matched
Youtube 1.13M 2.99 M 3.06 M 17 235 M
Skitter 1.70 M 11.1 M 28.8 M 51 3,995 M
Orkut 3.07 M 117 M 628 M 67 101,282 M

Friendster 65.6 M 1,806 M 4,174 M 129 425,808 M

To allow task prefetching, each worker buffers a small
set of tasks with estimated costs, and if all other tasks
are exhausted, the work requests tasks from a coordi-
nating master while continuing to process the buffered
tasks. The master collects task summary from all work-
ers to decide which tasks to be redistributed when some
worker requests more tasks. We remark that task steal-
ing strategies are still under development and are thus not
reported in this paper.

8 Experiments

We evaluate the performance of G-thinker, which is
implemented in C++ and communicates with HDFS
(Hadoop 2.6.0) using libhdfs. All our experiments were
run on a cluster of 15 machines, each with 12 cores
(two Intel Xeon E5-2620 CPUs) and 48GB RAM. The
connectivity between any pair of nodes in the cluster is
1Gbps. All system and application codes are released in
G-thinker’s website 3. We report end-to-end processing
time, from graph loading to when the slowest worker fin-
ishes its processing, for all the following experiments.

Table 2 shows the four real-world graph datasets used
in our experiments. We chose these graphs to be undi-
rected since our applications described in Section 6 are
for undirected graphs, while G-thinker can also handle
directed graphs. These graphs are also chosen to have
different sizes: Youtube4, Skitter5, Orkut6, and Friend-
ster7 have 2.99 M, 11.1 M, 117 M and 1,806 M undi-
rected edges, respectively.

We ran the algorithms described in Section 6, and
list the triangle count, maximum clique size (denoted by
|Qmax|), and number of matched subgraph instances in
Table 2. For graph matching, we used the query graph of
Figure 4(a) and randomly generated a label for each ver-
tex in the data graph among {a,b,c,d,e, f ,g} (following
a uniform distribution). We can see that the job is highly
computation-intensive; e.g., the number of matched sub-
graphs is in the order of 1011 for Orkut and Friendster.

Recall from Table 5 that each worker in G-thinker
maintains four task buffers, BT

in, BT
out , BQ

in and BQ
out . We

set the capacity of BT
in, BT

out and BQ
in to be the same, which

3http://yanda.cis.uab.edu/gthinker/
4https://snap.stanford.edu/data/com-Youtube.html
5http://konect.uni-koblenz.de/networks/as-skitter
6http://konect.uni-koblenz.de/networks/orkut-links
7http://snap.stanford.edu/data/com-Friendster.html

Table 3: Comparison with Serial Algorithms

Serial G-thinker
Youtube 4s 9s
Skitter 38s 25s
Orkut 3m33s 1m18s

Friendster 104m25s 48m43s

(a) Triangle Counting

Serial G-thinker
2m14s 19s
10m10s 5m56s
199m33s 10m56s
2348m25s 91m15s

(b) Graph Matching

(m = minutes, s = seconds)

Table 4: System Comparison (Triangle Counting)
G-thinker Arabesque Pregelix

Youtube 9s 1m59s 6m59s
Skitter 25s 5m45s 22m15s
Orkut 1m18s Memory Overflow 41m41s

Friendster 48m43s Memory Overflow No Disk Space

is the maximum number of tasks that are processed in
each round. We call this capacity as buffer capacity. We
also set the capacity of BQ

out to be the file capacity C,
since it loads a file of tasks from disk each time.

Unless otherwise stated, the default setting is as fol-
lows. Each machine runs 8 workers (i.e., 120 workers in
total). The buffer capacity is set as 1000 tasks, and the
file capacity C is set to be 100 tasks. Moreover, we set
Tcache to accommodate up to 1 M non-local vertices.

Comparison with Serial Algorithms. We first com-
pare the performance of the serial algorithms for sub-
graph finding with their distributed G-thinker counter-
parts. Since serial algorithms need to hold an entire input
graph in memory, we run them in a high-end machine
with 1TB DDR3 RAM and 2.2GHz CPUs. Table 3 re-
ports the comparison results for triangle counting (with
relatively low computation intensity) and graph match-
ing (which is highly computation-intensive). We see that
G-thinker is orders of magnitude faster than the serial al-
gorithm for graph matching, but only several times faster
for triangle counting. This is because the light computa-
tion workload of triangle counting cannot offset the com-
munication cost of vertex-pulling.

Comparison with Other Systems. We also compare
G-thinker with Arabesque [24] and Pregelix (version
0.2.12) [2]. Both Arabesque and Pregelix have already
implemented triangle counting and maximal clique enu-
meration, and we used these programs directly for com-
parison. Unfortunately, neither Arabesque nor Pregelix
could successfully finish maximal clique enumeration
on even the smallest graph Youtube in our cluster.
Arabesque failed after running for 1.5 hours due to mem-
ory overflow, while Pregelix reported a frame size error
since the 1-ego network of some vertex cannot fit in a
frame as required by Pregelix. In contrast, G-thinker
found the maximum clique (of size 17) in Youtube in just
around 20 seconds.

Table 4 reports the results for triangle counting. We

10

Table 5: Scalability

Worker # 15 30 60 120
Youtube 7s 7s 7s 9s
Skitter 44s 32s 34s 25s
Orkut 2m56s 1m43s 1m19s 1m18s

Friendster 106m41s 75m39s 58m06s 48m43s

Triangle Counting: (a) Vertical Scalability (b) Horizontal Scalability

Worker # 15 30 60 120
Youtube 19s 19s 15s 20s
Skitter 2m31s 2m05s 1m54s 2m01s
Orkut 6m58s 6m07s 3m01s 2m05s

Friendster 142m34s 81m57s 58m40s 51m01s

Maximum Clique: (c) Vertical Scalability (d) Horizontal Scalability

Worker # 15 30 60 120
Youtube 28s 17s 13s 19s
Skitter 2m46s 3m44s 2m33s 2m56s
Orkut 16m16s 15m31s 11m13s 7m56s

Friendster 481m34s 248m25s 134m59s 91m15s

Graph Matching: (e) Vertical Scalability (f) Horizontal Scalability

20 40 60
7s 7s 7s

26s 44s 24s
1m59s 1m32s 1m12s

129m54s 79m07s 57m54s

20 40 60
19s 14s 19s

2m45s 1m49s 1m49s
5m33s 3m35s 5m30s

143m39s 73m54s 57m56s

20 40 60
17s 11s 14s

3m13s 5m56s 3m47s
17m52s 9m02s 13m32s

441m06s 200m11s 143m43s

Table 6: Effect of System Parameters
Buffer Capacity Time Cache Capacity Time

100 54m53s 100,000 69m03s
1,000 48m43s 500,000 55m54s

10,000 38m21s 1,000,000 48m43s
(a) Effect of Task Buffer (b) Effect of Vertex Cache

Table 7: # of Random IO by LSH-Queue
Worker # 15 30 60 120
Youtube 3184 3194 3284 3230
Skitter 10996 11348 11760 11346
Orkut 55050 55244 55374 55482

Friendster 765326 768762 770570 771528

Table 8: Results with Stream-Queue
Worker # 15 30 60 120
Youtube 8s 7s 7s 10s
Skitter 30s 36s 27s 25s
Orkut 3m06s 3m36s 2m21s 1m58s

Friendster 118m32s 82m08s 65m09s 60m56s

can see that G-thinker is orders of magnitude faster
than both Arabesque and Pregelix, while memory-based
Arabesque is a few times faster than disk-based Pregelix.
However, Arabesque failed to process Orkut and Friend-
ster due to insufficient memory space. Pregelix failed
to process Friendster because it used up the disk space,
probably due to its space-consuming B-tree structure for
storing vertex data.

Finally, although NScale [19] is not public, [19] re-
ported that it takes 1986 seconds to count the triangles of
Orkut (not including the expensive subgraph construc-
tion & packing) on a 16-node cluster, while G-thinker
takes only 78 seconds on our 15-node cluster.

Scalability. We tested the vertical scalability of G-
thinker by running various applications with all 15 ma-
chines, where each machine runs 1, 2, 4 and 8 work-
ers, respectively. We also tested the horizontal scalabil-
ity of G-thinker by running various applications with 5,
10 and 15 machines, where each machine runs 4 work-
ers. The results are reported in Table 5, where we can
see that G-thinker scales well with the number of work-
ers per machine, and the total number of machines, es-
pecially for highly computation-intensive problems like
graph matching.

Effect of System Parameters. We conducted extensive
experiments to study the impact of various parameters
on system performance, and find that the performance is
mainly sensitive to buffer capacity and the capacity of
Tcache; the impact of other parameters such as the file ca-
pacity C is minor. Due to space limit, we only report the
results for triangle counting over Friendster here. Ta-
ble 6(a) shows the results when we change the buffer
capacity while keeping all other parameters as default.
We can see that the runtime decreases as the capacity
of task buffers increase, but increasing the capacity be-

yond 104 does not lead to much improvement. Table 6(b)
shows the results when we change the capacity of Tcache
while keeping all other parameters as default. We can see
an obvious reduction in runtime as the capacity of ver-
tex cache increases. Overall, the performance difference
is not significantly influenced by the system parameters
(e.g., less than doubled), and thus G-thinker is expected
to perform well even when the memory space is limited.

Stream-Queue v.s. LSH-Queue. Due to space limit, we
only report results for triangle counting; the results for
maximum clique and graph matching are similar. Table 7
reports the total number of random disk reads and writes
incurred by LSH-queue during the whole period of job
execution, for the vertical scalability experiments we re-
ported in Table 5(a). We can see that the number of ran-
dom IO is small, which demonstrates that LSH-Queue
exhibits near-sequential disk IO. We also repeated the
experiments using stream-queue instead of LSH-queue,
and Table 8 reports the results. Comparing Table 5(a) to
Table 8, we can see that LSH-Queue improves the per-
formance of most jobs, especially those with heavy com-
putation workload. For some jobs with relatively light
workload, the overhead incurred by LSH-Queue (e.g.,
key computation and random IO) stands out and stream-
queue is more efficient.

9 Conclusions and Future Work

We presented a new framework called G-thinker for scal-
able subgraph finding, whose computation-intensive ex-
ecution engine beats existing data-intensive systems by
orders of magnitude, and scales to graphs with size two
orders of magnitude larger given the same hardware re-
sources. Future work of G-thinker include designing ef-
fective task stealing strategy for load balancing, and ac-
celeration through new hardware (e.g., SSD and GPU).

11

References

[1] C. Bron and J. Kerbosch. Finding all cliques of an
undirected graph (algorithm 457). Commun. ACM,
16(9):575–576, 1973.

[2] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and
T. Condie. Pregelix: Big(ger) graph analytics on
a dataflow engine. PVLDB, 8(2):161–172, 2014.

[3] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis,
and S. Muthukrishnan. One trillion edges: Graph
processing at facebook-scale. PVLDB, 8(12):1804–
1815, 2015.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[5] J. Gao, C. Zhou, J. Zhou, and J. X. Yu. Continu-
ous pattern detection over billion-edge graph using
distributed framework. In ICDE, pages 556–567,
2014.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-
parallel computation on natural graphs. In OSDI,
pages 17–30, 2012.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph pro-
cessing in a distributed dataflow framework. In
OSDI, pages 599–613, 2014.

[8] H. He and A. K. Singh. Graphs-at-a-time: query
language and access methods for graph databases.
In SIGMOD, pages 405–418, 2008.

[9] X. Hu, Y. Tao, and C. Chung. I/o-efficient algo-
rithms on triangle listing and counting. ACM Trans.
Database Syst., 39(4):27:1–27:30, 2014.

[10] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ra-
manath, and G. Weikum. NAGA: searching and
ranking knowledge. In ICDE, pages 953–962,
2008.

[11] S. Khuller and B. Saha. On finding dense sub-
graphs. In ICALP, pages 597–608, 2009.

[12] J. Lee, W. Han, R. Kasperovics, and J. Lee. An in-
depth comparison of subgraph isomorphism algo-
rithms in graph databases. PVLDB, 6(2):133–144,
2012.

[13] G. Liu and L. Wong. Effective pruning techniques
for mining quasi-cliques. In PKDD, pages 33–49,
2008.

[14] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning in
the cloud. PVLDB, 5(8):716–727, 2012.

[15] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing.
In SIGMOD Conference, pages 135–146, 2010.

[16] J. Mondal and A. Deshpande. Eagr: supporting
continuous ego-centric aggregate queries over large
dynamic graphs. In SIGMOD, pages 1335–1346,
2014.

[17] J. Pattillo, N. Youssef, and S. Butenko. On clique
relaxation models in network analysis. Euro-
pean Journal of Operational Research, 226(1):9–
18, 2013.

[18] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang,
and X. Lin. Scalable big graph processing in
mapreduce. In International Conference on Man-
agement of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 827–838, 2014.

[19] A. Quamar, A. Deshpande, and J. Lin. Nscale:
neighborhood-centric large-scale graph analytics in
the cloud. The VLDB Journal, pages 1–26, 2014.

[20] L. Quick, P. Wilkinson, and D. Hardcastle. Us-
ing pregel-like large scale graph processing frame-
works for social network analysis. In ASONAM,
pages 457–463, 2012.

[21] A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D.
Ullman. Mining of massive datasets, volume 1.
Cambridge University Press Cambridge, 2012.

[22] S. Salihoglu and J. Widom. GPS: a graph process-
ing system. In SSDBM, page 22, 2013.

[23] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu.
Parallel subgraph listing in a large-scale graph. In
SIGMOD, pages 625–636, 2014.

[24] C. H. C. Teixeira, A. J. Fonseca, M. Serafini,
G. Siganos, M. J. Zaki, and A. Aboulnaga.
Arabesque: a system for distributed graph mining.
In SOSP, pages 425–440, 2015.

[25] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda,
and J. McPherson. From ”think like a vertex” to
“think like a graph”. PVLDB, 7(3):193–204, 2013.

[26] E. Tomita and T. Seki. An efficient branch-and-
bound algorithm for finding a maximum clique. In
DMTCS, pages 278–289, 2003.

12

[27] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase:
a probabilistic taxonomy for text understanding. In
SIGMOD, pages 481–492, 2012.

[28] J. Xiang, C. Guo, and A. Aboulnaga. Scalable
maximum clique computation using mapreduce. In
ICDE, pages 74–85, 2013.

[29] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big
graph analytics platforms. Foundations and Trends
in Databases, 7(1-2):1–195, 2017.

[30] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
block-centric framework for distributed computa-
tion on real-world graphs. PVLDB, 7(14):1981–
1992, 2014.

[31] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective tech-
niques for message reduction and load balancing
in distributed graph computation. In WWW, pages
1307–1317, 2015.

[32] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and
Y. Bu. Pregel algorithms for graph connectivity
problems with performance guarantees. PVLDB,
7(14):1821–1832, 2014.

[33] L. Zou, L. Chen, and M. T. Özsu. Distancejoin: Pat-
tern match query in a large graph database. PVLDB,
2(1):886–897, 2009.

13

	1 Introduction
	2 A Motivating Example
	3 Limitations of Related Work
	4 System Overview
	5 Programming Interface
	6 Applications
	7 System Implementation
	8 Experiments
	9 Conclusions and Future Work

