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ABSTRACT
Graph analytics systems have gained significant popularity due to
the prevalence of graph data. Many of these systems are designed to
run in a shared-nothing architecture whereby a cluster of machines
can process a large graph in parallel. In more recent proposals,
others have argued that a single-machine system can achieve better
performance and/or is more cost-effective. There is however no
clear consensus which approach is better. In this paper, we classify
existing graph analytics systems into four categories based on the
architectural differences, i.e., processing infrastructure (centralized
vs distributed), and memory consumption (in-memory vs out-of-
core). We select eight open-source systems to cover all categories,
and perform a comparative measurement study to compare their
performance and cost characteristics across a spectrum of input
data, applications, and hardware settings. Our results show that
the best performing configuration can depend on the type of appli-
cations and input graphs, and there is no dominant winner across
all categories. Based on our findings, we summarize the trends in
performance and cost, and provide several insights that help to illu-
minate the performance and resource cost tradeoffs across different
graph analytics systems and categories.
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1 INTRODUCTION
In recent years, there have been a proliferation of graph analyt-
ics systems that aim to perform complex graph analytics, such
as shortest-paths and clustering algorithms efficiently on large
graphs. One of the first systems, Pregel [21], uses a distributed
vertex-centric computation framework to partition a large graph
into groups of vertices for parallel processing. Recent graph an-
alytics system proposals that aim to enhance Pregel’s model can
be taxonomized along two dimensions. First, these systems can ei-
ther be distributed (in a cluster) or centralized (in a single machine).
For example, systems such as Galois [24] show that if one can fit
an entire graph dataset into the memory of a single machine, its
performance may even outperform a cluster for some workloads.
Second, in memory usage, these systems can either be in-memory
or out-of-core. To work around memory limitations, systems such
as GraphChi [18] and Pregelix [6] resort to out-of-core execution.

In this paper, we aim to carry out a comprehensive evaluation
of various open-source graph analytics systems that are publicly
available. As input data, we consider five well-known datasets
from Twitter, Youtube, Orkut, Friendster and road network, with
the largest dataset up to billions of edges. We use four represen-
tative graph analytics applications that have different execution
characteristics in the number of iterations and cost of each itera-
tion. Using the input data and applications, we benchmarked eight
different graph analytics systems (Galois [24], GraphChi [18], Pow-
erGraph [12], Giraph [3], X-Stream [28], Pregelix [6], GraphD [40],
Chaos [27]) with different settings on centralization vs distribution,
and in-memory vs out-of-core operations.

In our study, performance is not the only dimension to consider
when evaluating graph analytics systems. In many organizations,
cost is also a consideration, and one often has to find tradeoffs
between cost and performance. Unfortunately, there is no one-size-
fits-all solution, as the cost/performance ratio of each system is
also dependent on the applications and data. As an example, a
distributed graph analytics system may have higher throughput,
but if the entire graph can fit into the memory of one machine,
in-memory centralized systems may be a better option for some
workloads given the low cost of memory today. In other cases,
users may be less concerned about timeliness, and are willing to
allow batch jobs to complete over a longer period, negating the
need to run on high-end hardware. In a pay-as-you-go cloud model,
execution times become more important than initial sunk-cost of
equipment.

Unlike prior studies [7, 10, 11, 14, 16, 20, 30], our study is signifi-
cantly broader in the scope of data and applications being evalu-
ated, the breadth of systems selected and hardware configurations
used. We observe that there is no one-size-fits-all solution, as the
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cost/performance ratio of each system is also dependent on the
input applications and data, suggesting the need for an automated
tool to help data scientists determine the best deployment option
for their workloads. Specifically, the paper makes the following
contributions:
Graph analytics system taxonomy.We surveyed existing graph
analytics systems and taxonomized them along the dimensions of
centralized vs distributed, and in-memory vs out-of-core. In some
cases, a system may belong to more than one category. We further
summarize the characteristics of each category as well as each of
these systems surveyed.
Performance measurements. Using a wide range of datasets
and applications, we carried out a comprehensive evaluation study
of the above systems with different hardware configurations. We
observed that graph analytics system performance can vary sig-
nificantly based on the input graphs and queries of interest. Our
performance results are illuminating, and in some cases surprising.
For example, for workloads that require many iterations where
each iteration is fairly simple, in-memory execution on a single
machine is preferable to running in a distributed environment.
On the other hand, for workloads that require a small number
of iterations where each iteration is an expensive operation, an
in-memory distributed approach often provides the best perfor-
mance. Within workloads that require a small number of iterations,
there are further distinctions in performance based on whether
each iteration is bandwidth or computation intensive. We further
observe that out-of-core centralized approaches are desirable for
small datasets, while in-memory distributed approaches work best
for large datasets.
Cost/performance analysis.Wenext conducted our performance
evaluation by taking cost of hardware into consideration. We de-
fined a new performance-aware cost (PAC) metric, that allows us
to normalize performance based on cost. The PAC metric takes into
account resource cost and execution time, and serves as a frame-
work that can be customized as cost varies in future. Our results
here are also illuminating. While in-memory approaches will result
in better performance than out-of-core approaches, once cost is
factored in, this may no longer be true. We observed that there is
no clear winner in the cost/performance analysis, and the choice of
graph analytics systems is often highly dependent on the nature of
the workload. For example, for applications with large number of
iterations, centralized in-memory approaches continue to have the
best performance given the PAC metric. However, for applications
with small number of iterations, centralized out-of-core approaches
are actually the most preferred option, outperforming distributed
approaches, when the input graph is under billion scale. Surpris-
ingly, even taking cost into account, out-of-core distributed systems
are less desirable compared to in-memory distributed systems due
to long execution times.

This paper is presented as follows. Section 2 gives a taxonomized
analysis on existing graph analytics systems. Section 3 surveys the
most representative systems in each category. Section 4 details
the benchmark for our evaluation. Sections 5 and 6 present the
evaluation results and our analysis. Section 7 describes the novelty
of our work to related studies and explains our system selection.
Section 8 concludes the work.

2 TAXONOMIZED ANALYSIS
Our work studies general-purpose graph systems that are used for
developing scalable solutions for a wide range of graph analytics
tasks, rather than specialized systems that are designed for a par-
ticular graph task. These systems share the common features of
(1) programming simplicity and (2) transparent scalability. With (1)
and (2), a user only needs to specify how a vertex should interact
with other vertices and update its own state, and the computation
can automatically scale, either out (for distributed systems) or up
(for centralized systems), to handle graphs of arbitrary size without
the need to change the user’s code/algorithm.

The APIs of existing general-purpose graph systems mainly fall
into the following two types. (1) Message passing, where vertices
communicate with each other by sending messages. The computa-
tion is often iterative and synchronized at each iteration to eliminate
race conditions. (2) Shared-memory abstraction, where a vertex can
directly access the data of its adjacent neighbors/edges. This incurs
race conditions and data values need to be synchronized among
all replicas. However, asynchronous execution can be supported
to bring faster convergence, and this programming model is more
suitable for a centralized system.

We studied the design and implementation of existing graph sys-
tems, and categorized them based on their hardware requirements
and data access patterns. We classify an existing system according
to (i) whether it is designed to run on a single machine, or on a
cluster of machines, and (ii) whether the entire graph data reside
in memory during the computation, or are streamed on disk(s).
Accordingly, we obtain four categories of graph systems:
• In-memory centralized (IC) systems [24, 25, 33, 34], typi-
cally running on a high-end server with large memory space
(e.g., 1TB) in order to hold a big graph;
• In-memory distributed (ID) systems [3, 8, 12, 13, 15, 17,
21, 29, 32, 35–37, 39, 44], which are run on a cluster of ma-
chines whose aggregate memory space can accommodate a
big graph;
• Out-of-core centralized (OC) systems [9, 18, 28, 38, 45],
which are typically run on a desktop PC (or a laptop) that
has sufficient disk space to hold a big graph;
• Out-of-core distributed (OD) systems [6, 27, 40], which
are run on a cluster of machines whose aggregate disk space
can accommodate a big graph.

Next, we analyze the strengths and limitations of the systems in
each category, with a summary of the results given in Table 1.
• Hardware resource cost. Out-of-core centralized systems
have the lowest hardware resource cost (often a commodity

Centralized Distributed
In-memory Galois, GraphChi-IM PowerGraph, Giraph

Out-of-core GraphChi, X-Stream Pregelix, GraphD, Chaos

Category Machine 
Cost Scalability Fault 

Tolerance
Startup 

Overhead
Expressi-

veness
IC High Low � Medium High

ID High High � Low High

OC Low Medium � High Medium

OD Medium High � Low Medium

Table 1: Strengths and limitations of in each category
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PC or a laptop is sufficient). In contrast, in-memory central-
ized systems require a high-end server with large memory,
and such a machine is still considerably more expensive
and less commonly available to most companies/institutes.
Distributed systems usually require a relatively high initial
investment on the hardware, e.g., to purchase a cluster of
servers/PCs along with network components, although for
many companies/institutes a commodity cluster commonly
exists for their own operational tasks.
• Scalability. Distributed graph systems become popular
thanks to their horizontal scalability: one may increase the
aggregate memory (and disk) space in a cluster by simply
adding more machines, in order to process a bigger graph.
Since the memory (resp. disk) of all machines are accessed
(resp. streamed) concurrently, distributed graph systems can
utilize the memory (resp. disk) bandwidth from all machines.
However, network communication among the machines of-
ten becomes the performance bottleneck of such systems,
especially for data-intensive tasks, because commodity clus-
ters are more common today and they are equipped with
Gigabit Ethernet only. Furthermore, additional resources are
required to buffer and manage messages, leading to larger
total memory (and/or disk) consumption than a centralized
system.
Centralized systems, on the other hand, are constrained by
the limitation of the graph size that they can handle with the
available memory (resp. disk) space. Moreover, while net-
work communication is avoided, the performance of these
systems is often limited by the memory (resp. disk) band-
width of a single machine, leading to long execution time
for computation-intensive tasks on big graphs.
• Fault tolerance. A centralized system is a single point of
failure. In contrast, distributed systems are designed to be
fault tolerant: if any machine fails, its data/results can be
recovered from checkpoints/logs.
• Data loading/dumping overhead. Large-scale data load-
ing is much faster in distributed systems than in centralized
systems as the cost is shared by all machines in the cluster.
An out-of-core centralized system does not need to load the
entire graph into memory but stream the disk-resident graph
in each iteration; however, often expensive pre-processing is
required to reorganize the graph representation on disk so
that the data access pattern can be as sequential as possible.
Similarly, large-scale data dumping is also much faster in
distributed systems than in centralized systems.
• Expressiveness. Some out-of-core systems are less expres-
sive than in-memory systems, because efficient data stream-
ing in out-of-core systems requires vertex state and edge
value to have fixed size. For example, in triangle counting, a
vertex needs to obtain the adjacency lists of its neighbors,
and since the length of adjacency lists is not fixed, it is not
clear how one can implement efficient triangle counting in
such a system. Some out-of-core systems such Pregelix [6]
relax this restriction by organizing vertices using B-tree
structures, but additional overhead is incurred by the access
and maintenance of the B-tree structure.

Centralized Distributed
In-memory Galois, GraphChi-IM PowerGraph, Giraph

Out-of-core GraphChi, X-Stream Pregelix, GraphD, Chaos

Table 2: Representative systems

In Sections 5 and 6, wewill analyze all categories in details regarding
their system performance and resource cost for processing various
applications and datasets.

3 GRAPH ANALYTICS SYSTEM SURVEY
Given the long list of existing graph analytics systems, it is imprac-
tical to enumerate every one of them. In this section, we briefly
describe some of the most representative systems in each category
(details can be found in the full version1), as summarized in Table 2.
The emphases of our selection are availability, efficiency and de-
ployability. Some of them are state-of-the-art [27], and some are
widely used [3] in industry. We also use this list in our compara-
tive study in Sections 5 and 6. More systems and related work are
mentioned in Section 7.

3.1 In-Memory Distributed Systems
Pregel [21]. Pregel [21] pioneered the idea of vertex-centric com-
putation for graph analytics. With the vertex-centric model, a user
thinks like a vertex and only needs to specify the computation logic
of a vertex in a user-defined function (UDF), compute(msgs), and the
system automatically executes the compute function on all vertices.
A Pregel program proceeds in iterations, and a vertex can be either
active or inactive during processing. When the current iteration has
no active vertex and no message to be processed, then the program
terminates.

Giraph [3]. Apache Giraph is the open-source implementation
of Pregel, which we used in our experimental study. Giraph was
initially developed by Yahoo! and then optimized by Facebook re-
searchers, who improved CPU utilization of Giraph by multithread-
ing and reduced memory consumption by serializing vertex/edge
and message objects into byte arrays.

PowerGraph [12]. PowerGraph partitions a graph by the edges
and adopts a new computation model called Gather-Apply-Scatter
(GAS). In the Gather phase, a vertex collects data from its adjacent
vertices and edges. The gathered data are then aggregated and
used to update the value of the vertex in the Apply phase. In the
Scatter phase, the vertex may activate its neighbors (to perform
computation) along the adjacent edges.

3.2 Out-of-Core Centralized Systems
GraphChi [18]. In GraphChi, vertices communicate with each
other by putting and getting values on adjacent edges. To process
a large graph using limited memory, GraphChi pre-partitions the
vertices in multiple shards, where each shard also stores the value of
each incoming edge of its vertices. Shards are loaded into memory
for processing one after another. GraphChi also supports a selective

1http://cis.upenn.edu/~qizhen/graph_work.pdf
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mode to avoid loading a shard if there is no active vertex in the
shard.

X-Stream [28]. X-Stream adopts an edge-centric scatter-gather
model. Like in GraphChi, vertices are partitioned so that each par-
tition fits in memory. An X-stream program has two phases in each
iteration: scatter and gather. In both phases, each memory-resident
partition itself is further partitioned into cache-resident chunks
for parallel processing to improve cache locality. The weakness of
X-Stream is that there is no mechanism like the selective mode of
GraphChi.

3.3 Out-of-Core Distributed Systems
Pregelix [6]. Pregelix is an out-of-core distributed system. It mod-
els the Pregel API as a logical query plan, which is executed on a
parallel dataflow engine called Hyracks [4]. In each iteration, the
generated messages are joined with the set of vertices on the desti-
nation vertex ID, and then each vertex calls compute(.) to process
its received messages, update its value and generate new outgoing
messages. To efficiently support sparse computation where vertices
are managed by B-tree structures.

Chaos [27]. Chaos [27] is the distributed version of X-Stream
that attempts to use the aggregated disk bandwidth in a cluster.
Edge scattering and gathering workloads are distributed among
multiple machines, and work stealing is adopted for load balancing.
To achieve desirable performance, Chaos requires that machines
should be connected by high-speed network (e.g., 40GigE).

GraphD [40]. GraphD is an out-of-core Pregel-like system de-
signed to run in a cluster of commodity machines connected by
Gigabit Ethernet. It only requires each machine to keep the state
information in memory, while the corresponding adjacency lists
and incoming/outgoing messages are streamed on local disk. It
skips inactive vertices to save disk IO, and message streams are
organized into chunks to allow concurrent sending and appending.
It claims to achieve similar performance to those of in-memory
systems.

3.4 In-Memory Centralized Systems
Galois [24]. Galois keeps the graph in memory and adopts a
domain-specific language (DSL) to fully exploit the parallelism
of all cores. The DSL follows amorphous data-parallelism (ADP)
model [26] that supports speculative execution. Galois also sched-
ules the computation of vertices in a machine-topology-aware man-
ner.

GraphChi-IM. The GraphChi system described in Section 3.2 also
supports an in-memory mode that keeps the array of vertex values
in main memory. In this case, there is no need to write values to
edges, since a vertex can directly obtain its in-neighbors’ values
from memory to update its own value. We denote the in-memory
mode of GraphChi by GraphChi-IM, and include it in our experi-
ments by running it on a high-end server.

Algorithm Vertex Access Pattern Edge 
Direction

# of 
Iterations

SSSP Always low access rate No 
requirement

Linear to 
diameter

HashMin High access rate at first, 
drastically decreasing Undirected Linear to 

diameter

PageRank Always high access rate No 
requirement Fixed

Triangle 
Counting

Always high access rate, 
with random accesses Undirected Fixed

Table 3: Applications used for system evaluation

4 EVALUATION SETUP
In this section, we describe the setup for our comparative study,
including the applications and datasets, the hardware environments
and the metrics of evaluation.

4.1 Applications
To comprehensively evaluate the performance of the various sys-
tems we described in Section 3, we select four applications that
exhibit very different but representative vertex access patterns
during their execution, which are summarized in Table 3. Those
applications are either classic graph algorithms or frequently used
in production. Among them, in every iteration, SSSP only accesses
a fraction of vertices, while both PageRank and Triangle Counting
access all vertices. The difference between Triangle Counting and
PageRank is that, the former requires every vertex to fetch the
adjacency lists of its neighbors for computation, and thus a large
amount of random accesses to adjacency list data are inevitable.
Finally, HashMin accesses every vertex in the first iteration, but
the fraction of vertices that are accessed decreases rapidly in each
subsequent iteration. We now describe these four applications in
more details.

4.1.1 SSSP. The SSSP algorithm finds the shortest-path distance
from a user-specified source vertex s to every vertex v in the input
graph, which is recorded as an attribute of v , i.e., d (v ). Initially,
d (s ) is set to 0 and d (v ) is set to +∞ for every vertex v , s , and
only s is activated. In each iteration, every active vertex v sends
(d (v )+w (v,u)) to each out-neighboru, wherew (v,u) is the weight
of edge (v,u). Then, when a vertex u receives the distance values
from its in-neighbors, it checks whether the smallest value min
is less than d (u); if so, d (u) is updated asmin, and u is activated
for the next iteration. This process converges when every vertex
v has its shortest-path distance from s in d (v ). In each iteration of
SSSP, only vertices at the distance-propagation frontier perform
computation.

4.1.2 HashMin. HashMin computes the connected components
of an undirected graph by letting every vertex v propagate the
smallest vertex ID that v has received, which is recorded as an
attribute ofv , i.e.,min(v ). Initially, every vertexv initializesmin(v )
as its own ID, and all vertices are activated for ID propagation. In
each iteration, each active vertex v passesmin(v ) to its neighbors.
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Then, when a vertex u receives the ID values from its neighbors,
it checks whether the smallest valuemin is less thanmin(u); if so,
min(u) is updated asmin and u is activated for the next iteration.
This process converges when every vertexv hasmin(v ) equal to the
minimum vertex ID in v’s connected component. In each iteration
of HashMin, only those vertices whose attributes are not converged
perform computation.

4.1.3 PageRank. This algorithm [5] computes PageRank value
for every vertex v (denoted by pr (v )), based on the graph topol-
ogy. All vertices are active during the entire computation, and
initially pr (v ) is set to 1 for every vertex v . In each iteration, each
vertex v distributes pr (v ) to its out-neighbors evenly by sending
pr (v )/deд(v ) to each neighbor, where deд(v ) is the out-degree of
v; each vertex v then sums all received values, denoted by sum,
and updates pr (v ) as ((1 − d ) + d · sum), where d is the damping
factor typically set to 0.85. This process stops either when the sum
of PageRanks of all vertices converges, or when a pre-specified
maximum iteration number is reached.

4.1.4 Triangle Counting. Let us denote the adjacency list of a
vertex v by Γ(v ). The algorithm counts the number of triangles in
an undirected graph. Specifically, each vertex v obtains Γ(u) from
each neighbor u, to compute their common neighbors Γ(u) ∩ Γ(v ).
The number of triangles that involve v is computed by summing
|Γ(u) ∩ Γ(v ) | of all neighbors u ∈ Γ(v ). Note that each triangle
△vivjvk is counted three times, by vi , vj and vk , respectively. To
avoid duplicate counting, we may use Γ> (v ) = {u ∈ Γ(v ) |u > v}
in place of Γ(v ), so that each triangle △vivjvk (w.l.o.g., assume
vi < vj < vk ) will only be counted by vi . Note that some out-
of-core systems (e.g., GraphChi [18] and X-Stream [28]) fix the
size of the data passed from one vertex to another, and thus this
particular triangle counting algorithm cannot be implemented in
those systems.

4.2 Environment Setup and Datasets
Our experiments were run under three hardware settings available
in our institution to evaluate the systems described in Section 3.
The settings are listed as follows.

• Setting #1: A desktop PC with 4GB DDR3 RAM, a 3.2GHz
CPU and 1TB 7.2K rpm hard drive. OS is 64 bit Ubuntu 14.04
LTS with Linux kernel 3.10.
• Setting #2: A server with 1TB DDR3 RAM, eight 2.2GHz
CPUs and 600GB 15K rpm hard drive. OS is CentOS 7.3 with
Linux kernel 3.10.
• Setting #3: A cluster of 21 servers (1 master and 20 slaves),
each with 42GB DDR3 RAM, two 2.0GHz Intel Xeon E5-2620
CPUs and a 2TB 10K rpm hard drive, and OS is CentOS
6.5 with Linux kernel 2.6. The machines are connected by
Gigabit Ethernet.

These settings are selected to cover the hardware required by
the systems described in Section 3. We ran in-memory centralized
systems in Setting #2 with 1TB RAM, so that a big graph can be
kept in memory for processing. We ran out-of-core centralized
systems in Setting #1 since those systems are designed to run on a
cheap commodity PC [18]. Finally, distributed systems were run on

Category Setting Normalize
Price

IC #2 100
OC #1 1

Category Setting Normalize
Price

ID #3 200
OD #3 200

Category IC ID OC OD
Setting #2 #3 #1 #3

Table 4: Hardware used for each system category

Dataset Youtube USA Road Orkut Twitter Friendster
Type undirected undirected undirected directed undirected
|V| 1.1M 24M 3.1M 52.6M 65.6M
|E| 3M 58.3M 117.2M 2B 3.6B

Max Degree 28.8K 9 33.3K 780K 5214
Avg Degree 5.27 2.4 76.28 37.3 55.1
Diameter 20 6142 10 18 32
File Size 46.8MB 715.4MB 1.7GB 13.7GB 30.6GB

Table 5: Datasets (B = 1,000M, M = 1,000K, K = 1,000)

the cluster of Setting #3. Although we ran both out-of-core and in-
memory distributed systems in Setting #3, we monitored the actual
resources consumed during execution, to calibrate the resource
costs (e.g., memory space) of various systems. Table 4 summarizes
the settings used for each category of systems.

We used five real-world graph datasets in our experiments:
Youtube2,USARoad3,Orkut4, Twitter5, and Friendster6. These graphs
have different scales and characteristics (e.g., average degree, diam-
eter), which are summarized in Table 5.

4.3 Performance Metrics
We next introduce the performance metrics that we adopt to report
our experimental results.
• Running Time (seconds): This metric measures the end-
to-end execution time a system takes to complete a job, in-
cluding the time of loading a graph from disk(s) to memory,
and that of dumping the result to disk(s). Note that all the
systems we evaluated are open-source projects, and there
are online tutorials about how to compile, execute and tune
their performance. While we used the default configuration
of each system to test their performance, we also carefully
set other parameters to maximally utilize our hardware re-
sources, for example, full cores were used and sufficient
memory was allocated.
• Performance-Aware Cost (PAC): This metric combines
resource cost and running time together, so that a job that
takes longer to run on the same hardware will have a higher
PAC. The details on the PAC definition are described below.

The PAC metric is defined in terms of the resource cost of a job,
which is as follows:

ResourceCost = |CPU | × Pricecpu + |Mem | × Pricemem ,

where |CPU | is the number of CPUs used, |Mem | is the unit of
memory consumed, Pricecpu is the price of each CPU of that set-
ting and Pricemem is the price of per unit memory. ResourceCost

2https://snap.stanford.edu/data/com-Youtube.html
3http://www.dis.uniroma1.it/challenge9/download.shtml
4http://konect.uni-koblenz.de/networks/orkut-links
5http://konect.uni-koblenz.de/networks/twittermpi
6http://snap.stanford.edu/data/com-Friendster.html
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Instance A1 A2 A3 A4 A5 A6 A7
# of Cores 1 2 4 8 2 4 8
RAM (GB) 1.75 3.5 7 14 14 28 56
Price ($/h) 0.09 0.18 0.36 0.72 0.33 0.66 1.32

Table 6: Pricing of Microsoft Azure Standard Tier VMs [1]

indicates the hardware capacity in order to handle the workload,
which is related to instance prices (per time unit) in commercial
cloud platforms. We do not include cost of local disk storage as
they tend to be significantly cheaper than memory and CPU. In our
calculations of ResourceCost , we use the maximum number of CPU
cores as the degree of job parallelism permits. Likewise, we use the
maximum memory consumption by a job for |Mem |, since this is
what one needs to do in a cloud platform to run the job. Also, we
assume that the memory expense is proportional to |Mem |, which
is in accordance with the existing cloud services.

Since the hardware used in our experiments is not exactly identi-
cal to an existing public cloud, we plug in values that are consistent
with the pricing models of public clouds, yet reflect the relative
price differences across different hardware that we use. For each
hardware setup in our experiments, we use the publicly available
pricing information to set the value of Pricecpu and Pricemem . This
is a tunable parameter in our framework and can be updated in
future as prices change. Note that our ResourceCost formulation is
in line with pricing models in public clouds. For example, in Mi-
crosoft Azure, the instance pricing of Standard Tier VMs is shown
in Table 6, where the price is proportional to the RAM size when
the number of cores is fixed.

The PAC metric is proportional to both the running time and
the resource cost.

PAC = RunninдTime × ResourceCost .

Intuitively, the PAC metric is based on a typical pricing model in a
public cloud infrastructure, which charges based on running time
on a particular instance. We report the normalized PAC results
for comparison in Section 6. Comparing the PAC values between
different jobs approximates the comparison of their monetary costs
in a commercial cloud computing platform.

5 RUNNING TIME EVALUATION
In our experimental section, we compare the running time of dif-
ferent systems across different applications and datasets. We defer
PAC to the next section.

5.1 Summary
We aggregate the running time of each system by application and
dataset respectively, and select the top four systems. The overall
system performance ranking for each application is shown in Ta-
ble 7. Note that in Triangle Counting, only three systems are able
to finish within twenty-four hours. Our table lists the four applica-
tions based on the overall computation load (SSSP being the lightest,
while Triangle Counting the heaviest). Note that even though Tri-
angle Counting has the least number of iterations, each iteration

System Ranking

Algorithm #1 #2 #3 #4

SSSP Galois PowerGraph Giraph GraphD

HashMin Galois Giraph PowerGraph GraphD

PageRank PowerGraph Giraph GraphD Galois

Triangle Counting PowerGraph Galois GraphD N/A

Table 7: System running time ranking by application

System Ranking

Dataset #1 #2 #3 #4

Youtube Galois GraphChi-IM GraphChi X-Stream
USA Road Galois GraphChi-IM Giraph PowerGraph

Orkut Galois PowerGraph GraphChi-IM Giraph
Twitter PowerGraph Giraph Galois GraphChi-IM

Friendster PowerGraph Giraph Galois GraphD

Table 8: System running time ranking by dataset

is computationally expensive, and hence it incurs the highest load
overall.

We rank the systems based on their performance, breakdown by
application (Table 7) and dataset (Table 8). In Table 7, to provide
an aggregate performance value, we sum up the processing time
for each application across all the datasets and take the average.
We make the following observations. Likewise, when aggregating
by datasets, we take the average processing time that each system
takes for all successful applications.
Many iterations, low compute-intensive applications. First,
we observe that when an application runs for a large number of
iterations and the computation in each iteration is not heavy (typi-
fied by SSSP and HashMin), an in-memory centralized system such
as Galois always gives the best performance. This is because there
is no synchronization overhead on disk or network I/O between
iterations for in-memory centralized systems7 Two in-memory
distributed systems (PowerGraph and Giraph) also perform well,
taking in the second and the third positions. Between PowerGraph
and Giraph, the differences in running time is negligible.
Few iterations, compute-intensive or bandwidth-intensive
applications. For computationally intensive jobs such as PageRank
and Triangle Counting, however, distributed systems (PowerGraph
and Giraph) tend to outperform centralized systems (Galois). Pow-
erGraph has the best performance, demonstrating the benefits of
parallel processing of compute intensive jobs. Here, we observe
that even the out-of-core distributed system, GraphD, outperforms
the in-memory Galois for PageRank computation. On the other
hand, for Triangle Counting, Galois performs better than GraphD
because it is more bandwidth-intensive compared to PageRank,
since an entire adjacent list (and not just a vertex value) needs to be
transmitted for each iteration. This significantly increases network
and disk I/O overhead, which penalizes out-of-core systems such
as GraphD.

7The other in-memory centralized system GraphChi-IM, however, is not in the list
as the system has difficulty completing the processing of the Friendster graph, which
is our largest dataset.
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Scalability analysis.Weobserve interesting trends across datasets
as they scale (Table 8). For the smallest dataset (Youtube), all cen-
tralized systems, no matter in-memory or out-of-core, out-perform
distributed systems. The reason is that the overhead of commu-
nication among machines outweighs the computation reduction
gained by a distributed system. When the input dataset becomes
larger, as on USA Road, although in-memory centralized systems
still have the best performance, centralized out-of-core systems
are not as efficient as in-memory distributed systems. However,
when the dataset size continues to increase, as in the case of Orkut,
PowerGraph overtakes GraphChi-IM in second place, while Giraph
is in fourth place. When the dataset reaches billion-edge scale, as in
the cases of Twitter and Friendster, the two in-memory distributed
systems PowerGraph and Giraph provide the best performance.
All in all, our scalability analysis suggests that in-memory central-
ized systems are best suited for small datasets, while large datasets
benefit from in-memory distributed systems.

5.2 Detailed Analysis
We now analyze the running time of different systems in each
application and on each dataset. Due to space limit, we simplify the
analysis here. More details can be found in the full version 1.

Running time of SSSP. In this set of experiments, for each dataset,
we randomly selected ten source vertices for running SSSP. Each
reported result was averaged over the 10 runs. Figure 1 reports the
running time of various systems over the datasets. We do not report
the performance of Pregelix, since even though we tried our best
to tune the configuration of Pregelix, the experiment of SSSP kept
crashing and could not finish successfully.

Figure 1a) shows that on Youtube, Galois has the best perfor-
mance, and all the centralized systems exhibit much better perfor-
mance than distributed systems. It is because running distributed
systems on small graphs is inefficient as the communication cost
between machines outweighs the per-machine computation work-
load.

Although USA Road is also not big, Figure 1b) shows that Graph-
Chi is slower than the distributed systems, while X-Stream and
Chaos could not even finish in 24 hours. The drastic performance
difference is caused by the larger diameter of USA Road, and thus
the computation takes many iterations. Out-of-core systems need
to stream the entire graph from disk(s), and thus each iteration is
much more costly than in-memory systems.

In Figure 1c), although Galois continues to outperform the other
systems, GraphChi-IM is slower than PowerGraph and comparable
to Giraph. This shows that the size of Orkut is large enough so
that the reduced per-machine computation workload offsets the
communication overhead. As a distributed version of X-Stream,
Chaos has slightly better performance than X-Stream.

Figure 1d) reports the results on Twitter which is tens of times
larger than Orkut. Figure 1d) shows that all the distributed sys-
tems, except Chaos, outperform GraphChi-IM, demonstrating their
strength for processing big graphs. Figure 1e) reports the results of
the largest dataset, Friendster, and only five systems could complete
the processing within 24 hours. In particular, GraphChi-IM could
not even finish preprocessing within 24 hours (and thus no results
for all applications).

Figure 5 compares the systems in terms of categories (rather
than individually). For each category, we use the fastest system as
its representative (for each dataset). Except USA Road, the result
shows that the running time increases with the graph size for all
categories. IC is always the fastest while OC is good at processing
small datasets, but it becomesmuch slower than the other categories
as the dataset size becomes larger, as the disk bandwidth is the
bottleneck and cannot be increased by scaling out. Overall, the
running time is ranked as IC < ID < OD < OC. For large-diameter
graphs like USA Road, distributed (resp. out-of-core) systems are
much slower than IC since expensive network synchronization
(resp. disk streaming) is performed for many iterations.

Running Time of HashMin. We ran HashMin on undirected
graphs. Figure 2 reports the results. HashMin has a heavier com-
putation workload than SSSP, since all vertices are active at the
beginning of the application. Thus, we could not obtain more results
for HashMin within reasonable time than for SSSP.

Figure 2a) shows that centralized systems still beat distributed
systems on Youtube. Figure 2b) shows the results when a large
number of iterations are required, for which in-memory systems
are much faster than out-of-core ones. Figures 2c) and d) show that
for larger graphs, the performance gap between OC systems and
other categories of systems becomes larger (almost two orders of
magnitude for Friendster). Also, the performance of IC systems and
distributed systems (except Chaos) is relatively close for the two
larger graphs.

Figure 6 compares the running time of HashMin at the system-
category level. We observe similar patterns as in Figure 5, but the
performance gap between IC and ID is now much smaller on the
large graphs, because HashMin has a heavier computationworkload
and hence distributed computing helps more than in the case of
SSSP.

Running Time of PageRank. PageRank is not a traversal style
application (like SSSP and HashMin), and hence the number of
iterations needed for computing PageRank does not depend on
the graph diameter. We ran 10 iterations in each experiment. But
note that each iteration has a heavier computation workload than
HashMin, since all vertices are active in every iteration. Except for
GraphChi-IM, which did not finish on Friendster, all the experiments
successfully finished in 24 hours.

Figure 3a) shows that for this smallest dataset, centralized sys-
tems still have better performance than distributed ones due to the
overhead of distributed computing. Among distributed systems,
PowerGraph has the best performance. In Figure 3b), GraphChi
competes all OD systems, and the performance of GraphD is close
to Giraph, which is an in-memory distributed system.

Chaos is now many times faster than X-Stream in Figures 3c)–e),
since for the larger datasets the reduced per-machine computa-
tion workload offsets the communication overhead. PowerGraph
achieves comparable performance as Galois and GraphChi-IM in
Figure 3c), and is the fastest system in Figures 3d) and e), which
shows that in-memory distributed architecture is the fastest for pro-
cessing heavy-workload computation on large graphs (when the num-
ber of iterations is not large). This is very different from what we
observed in Figure 1, where Galois always has the best performance.
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Figure 1: Running time of SSSP (seconds). GC-IM, GA, PG, GI, GC, XS, CH, andGD represent GraphChi-IM, Galois, PowerGraph,
Giraph, GraphChi, X-Stream, Chaos, and GraphD respectively. The categorization of the systems are as follows: (IC: GC-IM,
GA), (ID: PG, GI), (OC: GC, XS), (OD: CH, GD). Note that the legends apply to Figures 1-4.
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Figure 2: Running time of HashMin (seconds). PR represents Pregelix (which is in OD).
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Figure 3: Running time of PageRank (seconds)

10-1

100

101

102

103

104

105

GC-IM

GA

PG

GI

GD

PR

(a) Youtube

10-1

100

101

102

103

104

105

GC-IM

GA

PG

GI

GD

PR

(b) USA Road

10-1

100

101

102

103

104

105

GC-IM

GA

PG

GD

PR

(c) Orkut

10-1

100

101

102

103

104

105

GA PG GD

(d) Friendster

Figure 4: Running time of Triangle Counting (seconds)
Figure 7 shows the PageRank running time comparison at the

system-category level, which is quite different from Figure 5 and
Figure 6. Firstly, the “IC” curve is no longer always at the bottom,

and is actually surpassed by distributed systems (i.e., ID and OD)
on Friendster, which means the scalability of “IC” is worse than
distributed systems for this application with heavier workload.
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Figure 5: Categorical comparison of SSSP running time (seconds)
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Figure 6: Categorical comparison of HashMin running time (sec-
onds)

Figure 7 also shows that in-memory systems are always faster than
out-of-core systems.

Running Time of Triangle Counting. Triangle counting re-
quires each vertex to obtain its neighbors’ adjacency lists. It has
the heaviest workload among all the applications, and the number
of iterations is the smallest.

This application needs the input graph to be undirected, thus,
we exclude Twitter from the experiments. Moreover, GraphChi,
X-Stream and Chaos fix the size of a message, and thus cannot
implement triangle counting which requires transmitting variable-
length adjacency lists. Giraph ran out of memory on Orkut and
Friendster. Finally, Pregelix could not finish processing Friendster
within 24 hours.

The results are shown in Figure 4. PowerGraph is always the
fastest system because of the heavy computation workload (except
for USA Road which only has few triangles, as shown in Figure 4b).
All other distributed systems, Giraph, Pregelix and GraphD, adopt
the message-passing model rather than a shared-memory abstrac-
tion as does in PowerGraph. Thus, the adjacency list data of a vertex
need to be pushed to its neighbors, icurring data transmission and
storage. As a result, they are much slower than PowerGraph and
the IC systems.

We show the categorical comparison results in Figure 8. ID is
faster than IC on the large graphs, and thus has better scalability.
In contrast, OD has the worst performance, and much worse than
both ID and IC.
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Figure 7: Categorical comparison of PageRank running time (sec-
onds)
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Figure 8: Categorical comparison of Triangle Counting running
time (seconds)

System Ranking

Algorithm #1 #2 #3 #4

SSSP Galois GraphChi PowerGraph Giraph
HashMin Galois GraphChi Giraph PowerGraph
PageRank GraphChi PowerGraph X-Stream GraphD

Triangle Counting PowerGraph Galois GraphD N/A

Table 9: System PAC ranking by application

System Ranking

Dataset #1 #2 #3 #4

Youtube GraphChi X-Stream Galois GraphChi-IM
USA Road Galois GraphChi-IM GraphChi Giraph

Orkut GraphChi PowerGraph Galois GraphChi-IM
Twitter PowerGraph GraphChi Galois GraphD

Friendster PowerGraph GraphChi Giraph GraphD

Table 10: System PAC ranking by dataset

6 PAC EVALUATION
The comparison based on running time only concerns about which
system (or category of systems) can finish a job faster. However,
efficiency may often come at the expense of higher hardware cost.
If time is not the most critical criterion (e.g., in an offline graph
analytics such as PageRank computation), a more economical so-
lution could be more attractive. We now describe the comparison
based on the performance-aware cost (PAC) of different systems,
the findings of which are quite different from those in Section 5.2.
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Figure 9: Categorical comparison of PAC for SSSP
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Figure 10: Categorical comparison of PAC for HashMin

6.1 Summary
Table 9 and Table 10 show the relative rankings of the top 4 systems
using the PAC metric, aggregated by the application and dataset, in
a similar fashion as described in Section 5.1. We make the following
observations.
Many iterations, low-compute intensive applications. Revis-
iting the earlier SSSP and HashMin applications, we note that the
best performing system (Galois) also has the lowest PAC. GraphChi
is in second place because of its low resource cost (given that it does
out-of-core operations) and reasonable speed. Although X-Stream
consumes similar resources as GraphChi, it is not among the top
four due to its longer running time. Instead, GraphChi is followed
by two in-memory distributed systems (PowerGraph and Giraph).
The strong performance of these systems cannot compensate for
their higher costs compared with GraphChi.
Few iterations, high compute/bandwidth intensive applica-
tions. For the PageRank applications, GraphChi has the lowest
PAC, and the other two out-of-core systems, X-Stream and GraphD,
also make into the top four. This shows that out-of-core systems (es-
pecially centralized) are cost effective in applications with heavier
computation but few iterations. The second-ranked PowerGraph
requires more costly resources, but this is compensated by its high
throughput (and hence fast completion time). The ranking for Tri-
angle Counting is the same as Table 7. This is because for this
heaviest-workload task, both PowerGraph and Galois have short
running time, which offsets their higher costs, resulting in lower
overall PAC. (see Section 6.2 for details.)
Scalability analysis. When the dataset is small, as in the case
of Youtube, out-of-core centralized systems are the best choice
because of low resource cost and reasonably high speed. However,
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Figure 11: Categorical comparison of PAC for PageRank
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Figure 12: Categorical comparison of PAC for Triangle Counting

the comparison of PAC for USA Road and Orkut shows that they are
not good choices for large-diameter graphs that requires multiple
iterations (even when the dataset itself is small). Instead, in-memory
centralized systems are the best choices for handling large-diameter
graphs. When datasets become larger, as in the case of Twitter
and Friendster, PowerGraph replaces GraphChi to become the best
system that balances resource cost and job processing speed. But
GraphChi still has a lower PAC than the other systems. Overall, we
observe that when the input graph reaches billion-edge scale, it is
always better to choose in-memory distributed systems for high
speed or out-of-core centralized systems for saving costs.

6.2 Cross-Category Analysis of PAC
We omit the detailed analysis of different systems’ PAC in each
application and for each dataset due to space limit. These details can
be found in the full version report 1. We analyze the cross-category
comparison results in PAC metric, where we normalize all PACs to
the smallest one to get relative PACs as mentioned in Section 4.3.

PAC of SSSP. Figure 9 shows the PAC comparison at the system-
category level, where we selected the system with the lowest PAC
in each category to represent the PAC of that category. IC is always
the best except on the smallest dataset and OD is always the worst
except on the largest dataset, where the two exceptions are both
OC. Thus, OC cannot scale to handle large graphs as what we
observed in Figure 5. However, compared to Figure 5 where OC is
always the worst category except on the smallest graph, OC’s PAC
is significanly lower than distributed systems on most graphs. This
shows the advantages of OC on saving cost. ID always performs
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better than OD, which shows that running out-of-core distributed
systems is costly.

PAC of HashMin. Figure 10 reports the PAC comparison at the
system-category level for HashMin, which is similar to that in
Figure 9. The difference is that IC is not as dominant as in Figure 9
and OC becomes better. Except on the large-diameter graph, i.e.,
USA Road, the gap between IC and OC on the large graphs is much
smaller than in Figure 9 and so is the gap between IC and ID/OD. In
fact, forOrkut and Friendster, the PAC of ID is nearly the same as that
of IC, which shows that ID works better when the workload is more
computationally intensive. OC is now better than all distributed
systems, except worse than ID on the largest graph. In contrast,
although OD is also designed to be cost effictive, it has has the
greatest PAC in this application.

PAC of PageRank. Figure 11 reports the results for PageRank,
which shows that the PAC is consistently ranked as OC < IC and
ID < OD on all datasets. As the graph size becomes larger, the
curves of distributed systems grow slower than centralized systems,
which shows that distributed systems have better PAC scalability on
dataset size than centralized systems. This result is interesting as it
shows that out-of-core systems may not be always more cost-effective,
and there is a point distributed systems can be the most cost-effective
choice. Compared with Figure 7, OC turns from the worst to the
best system category overall, which means that OC performs well
in heavy workloads considering the available resources.

PAC of Triangle Counting. The results for triangle counting are
shown in Figure 12. OD still has the largest PAC, which shows that
out-of-core execution is not suitable for this application due to the
huge amount of intermediate data (i.e., adjacency lists). Although
ID has higher PAC on USA Road than IC because of few triangles
and thus light computation, it is better than IC in all the other
cases (even on small graphs). Combined with the results shown
in Figure 8, we can see that ID not only achieves high processing
speed but also is cost efficient, and hence the best choice for this
type of workloads.

7 RELATEDWORK
System selection. Many distributed [3, 6, 8, 12, 13, 15, 17, 21, 29,
32, 35–37, 39, 44] and centralized [9, 25, 33, 34, 38, 45] graph an-
alytics systems have been developed. Even though we selected
various representative systems covering all categories, there are
still a number of systems we did not include in our study, and here
we explain why they were not considered besides the limited space.
GraphX [13] is a graph engine built on top of Spark [43] provid-
ing both vertex-centric and GAS abstractions. It is optimized for
graphs, and thus much more efficient than Spark. However it is
outperformed by PowerGraph and Giraph in some applications as
reported in [13]. Recently, some systems have been developed to
efficiently evaluate declarative graph queries, such as SociaLite [31]
and Emptyheaded [2]. However, such systems focus on abstrac-
tions and their performance cannot compete with low level graph
engines, for example, Galois, as reported in [2].
Graph analytics system measurement. There have also been
a number of experimental studies on some graph analytics sys-
tems, but they are all limited to the comparison of systems within

the same category/setting. Elser et al. [10] compared Pregel-like
systems with MapReduce, but the datasets used are small, and
most of the systems are not the state-of-the-art or representative
systems. Guo et al. [14] designed a benchmark to evaluate graph
processing platforms, but only in-memory distributed systems were
considered. Satish et al. [30] designed various metrics to evaluate
several systems in both centralized and distributed environments,
but systems were compared only within the same environment.
Han et al. [16] and Lu et al. [20] conducted comprehensive compar-
ison of in-memory distributed vertex-centric systems, while [20]
also compared the running time of these systems with GraphChi.
Li et al. [19] analyzed the performance differences of a number
of general-purpose distributed systems such as Spark, Flink, Na-
iad [23], and Husky [41, 42]. They also examined the performance
of these systems on some graph algorithms, but the scope is rather
limited. [22] showed that some distributed systems have worse
performance than a raw single-threaded implementation, but it
may not be fair to compare the performance of general-purpose
graph systems with that of a specialized implementation of a graph
algorithm. We are the first to cover all the quadrants of the two di-
mensions, and the findings from our systematic study are insightful
for graph analytics system selection and development.

8 CONCLUSIONS
We classified existing graph analytics systems into four categories
according to their hardware requirements and architectural differ-
ences, analyzed the strengths and limitations of the systems in each
category, and compared them in terms of their running time and
resource cost. Many interesting findings are observed. For example,
in-memory centralized systems are always the best for graph traver-
sal applications on large-diameter graphs and fastest for processing
small graphs with lighter workloads, but they perform worse (even
when memory is sufficient) than in-memory distributed systems
when computation workload is heavy and the input graph is large.
For in-memory execution, distributed systems are generally slower
than centralized ones for jobs that require many iterations, as syn-
chronization between machines is costly. Out-of-core systems are
not suitable for processing large-diameter graphs due to the high
cost of streaming data from/to disk, but out-of-core centralized sys-
tems are a good choice to balance resource cost and running time for
computationally intensive workloads (even on large graphs). More
detailed conclusions about our analysis are given in Sections 2, 5
and 6. A follow-up to this work is to perform an in-depth analysis
on the performance difference between selected pairs of systems,
and study whether the performance gap and what fraction of the
gap comes specific system design and implementation choices such
as barrier synchronization, shuffling, message combiner, memory
access patterns, etc. We will also investigate the performance of
various systems on extremely large graphs with different graph
characteristics.
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