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Abstract—We propose GraphD, an out-of-core Pregel-like system targeting efficient big graph processing with a small cluster of

commodity PCs connected by Gigabit Ethernet, an environment affordable to most users. This is in contrast to some recent efforts for

out-of-core graph computation with specialized hardware. In our setting, a vertex-centric program is often data-intensive, since the CPU

cost of calculating a message value is negligible compared with the network cost of transmitting that message. As a result, network

bandwidth is usually the bottleneck, and out-of-core execution would not sacrifice performance if disk IO overhead can be hidden by

message transmission, which is achieved by GraphD through the parallelism of computation and communication. GraphD streams

edge and message data on local disks, and thus consumes negligible memory space. For a broad class of Pregel algorithms where

message combiner is applicable, GraphD completely eliminates the need of any expensive external-memory join or group-by, which is

required by existing systems such as Pregelix and Chaos. Extensive experiments show that GraphD beats existing out-of-core systems

by orders of magnitude, and achieves comparable performance to in-memory systems running with adequate memory.

Index Terms—Out-of-core, graph, vertex-centric, Pregel
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1 INTRODUCTION

SINCE the advent of Pregel [15], various vertex-centric sys-
tems have been actively developed for processing big

graphs [1], [4], [6], [13]. In these systems, a programmer
only needs to specify the behavior of one generic vertex
when developing distributed graph algorithms. Due to this
user-friendly programming model, and good horizontal
scalability, vertex-centric systems have been popularly used
in various real applications such as social network analy-
sis [19] and graph matching [5], [23].

However, most distributed vertex-centric systems
require the entire input graph to reside in main memory of
machines. Intermediate data generated for communication
among machines are also buffered in memory, and the
space consumption can be very high. For example, [33]
reported that to process a graph dataset that takes only 28
GB disk space, Giraph and GraphLab need 370 and 800 GB
memory space, respectively.

While memory is becoming cheaper and memory-rich
clusters are becoming affordable to big companies and well-
funded research labs, this is still not the case for many
small businesses and researchers. For example, [1] reported
that in the Giraph user mailing list there are 26 cases of

out-of-memory related issues from March 2013 to March
2014. Nevertheless, it is often the large body of small busi-
nesses and researchers who have urgent need of scalable
graph processing technologies, while big companies have
the capability of developing their own proprietary systems.

Modern applications often generate very big graphs, such
as online social networks, the Web graph, and knowledge
graphs. However, to perform in-memory PageRank compu-
tation over a Twitter graph with 1.96 billion follow-edges
(see Table 1 in Section 6), Giraph and Pregel+ [30] need
nearly 264 and 109 GB memory space in our cluster, respec-
tively. To process a Web graph like ClueWebwith 42.6 billion
edges (see Table 1), Giraph and Pregel+ [30] would need 5.7
and 2.4 TBmemory space, respectively, which is prohibitive.

To process a big graph beyond the memory limit, several
out-of-core systemswere developed for runningwith the disk
of a single machine (often a PC), such as GraphChi [12],
X-Stream [21] and VENUS [3]. For small graphs, these sys-
tems may beat a distributed one since there is no expensive
network communication. However, such a system needs to
stream and process the entire graph, and the execution time
increases with the graph size due to fixed disk bandwidth;
this is in contrast to a distributed systemwhere each machine
only needs to process a portion of the input graph. As a result,
distributed out-of-core systems such as Pregelix [1] and
Chaos [20] were recently developed for streaming the disks of
all machines concurrently, to achieve high aggregate disk
bandwidth. As confirmed by our experiments in Section 6,
distributed systems can be much more efficient than single-
machine oneswhen processing a big graph.

To compensate for the lowdisk bandwidth in a standalone
environment, researchers have explored the potential of uti-
lizing flash memory as the external memory media. Flash
memory supports significantly faster random access time
than magnetic disks, and can service multiple concurrent IO.
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Systems like FlashGraph [32] and G-Store [11] use multi-
threading to achieve maximum IO performance out of flash
memory. However, large flash memory is still not widely
available to every small business and researcher for the
time being.

We target the setting of a small cluster of commodity
PCs connected by Gigabit Ethernet, which is affordable to
most users. In this environment, disk streaming band-
width is usually much higher than network bandwidth,
and network communication is usually the performance
bottleneck of a vertex-centric program. Specifically, verti-
ces communicate by message passing, and the CPU cost of
calculating a message value is negligible compared with
the network cost of transmitting that message. In our tar-
geted setting, a distributed vertex-centric system does not
need to keep graph and messages in memory: they can be
streamed on disks, and as long as the disk IO cost is hid-
den by the communication cost, scalability is achieved
without sacrificing performance.

In this paper, we introduce our out-of-core Pregel-like
system, GraphD, for efficient big graph processing on a
small cluster of commodity PCs connected by Gigabit Ether-
net. We remark that GraphD is for use when the aggregate
memory space is insufficient for in-memory processing; oth-
erwise, one may use an existing in-memory Pregel-like sys-
tem instead. Also, GraphD is designed for the normal
setting without special hardware. If large flash memory is
deployed, one may use dedicated systems like Flash-
Graph [32] or G-Store [11]; while if high-speed network is
available, one may use dedicated systems like Chaos [20] or
GraM [27] .

GraphD provides the following desirable features:

� Bounded Memory Space. When a graph G ¼ ðV;EÞ is
processed with n machines, we prove that each
machine only requires OðjV j

n Þmemory space.
� Efficient Sparse Computation. GraphD automatically

adapts the amount of edges streamed from local
disks to the number of active vertices that perform
computation.

� Overlapping Disk and Network IO. GraphD buffers
outgoing messages to local disks to reduce memory
consumption, and this cost is hidden by the slower
message transmission that executes in parallel.

� Efficient External-Memory Processing. For a broad class
of Pregel algorithmswheremessage combiner is appli-
cable, GraphD uses a technique called ID-recoding to
eliminate the need of any expensive external-memory
join or group-by, as required by other systems like
Pregelix.

Extensive experiments demonstrate that GraphD is able
to achieve comparable performance to an in-memory Pre-
gel-like system.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the execution
model of GraphD, and analyzes its space cost. Section 4
discusses the parallel framework of GraphD which fully
overlaps computation with communication. Section 5
describes the ID recoding technique and Section 6 reports
experimental results. Finally, the paper is concluded in
Section 7.

2 BACKGROUND AND RELATED WORK

We first review the computation model of Pregel, and then
introduce other vertex-centric systems for processing big
graphs.

In this paper, we assume that the input graph G ¼ ðV;EÞ
is stored on Hadoop Distributed File System (HDFS), where
each vertex v 2 V has a unique ID idðvÞ and an adjacency
list GðvÞ. For simplicity, we use v and idðvÞ interchangeably.
If G is undirected, GðvÞ contains all v’s neighbors; while if G
is directed, GðvÞ contains all v’s out-neighbors. The degree
(or out-degree) of v is denoted by dðvÞ ¼ jGðvÞj. Each vertex
v also maintains a value aðvÞ which gets updated during
computation. A Pregel program is run on a cluster of
machines,W, deployed with HDFS.

2.1 Pregel Review

Computation Model. A Pregel program starts by loading an
input graph from HDFS into the memory of all machines.
Each vertex v is distributed to a machineW ¼ hashðvÞ along
with GðvÞ, where hashð�Þ is a partitioning function that takes
vertex ID as the input. We denote the set of all vertices that
get assigned to W by V ðWÞ. Each vertex v also maintains a
boolean field activeðvÞ indicating whether v is active.

A Pregel program proceeds in iterations, where an itera-
tion is called a superstep. In Pregel, a user needs to specify a
user-defined function (UDF) compute(msgs) to be called by a
vertex v, where msgs is the set of incoming messages
received by v (sent in the previous superstep). In v.compute
(�), v may update its value aðvÞ, send messages to other ver-
tices, and vote to halt (i.e., deactivate itself). Only active ver-
tices will call compute(�) in a superstep, but a halted vertex
will be reactivated if it receives a message. The program ter-
minates when all vertices are halted and there is no pending
message towards the next superstep. The final results are
dumped to HDFS at last.

To illustrate how to write compute(�), we consider the
PageRank algorithm of [15] where aðvÞ stores the PageRank
value of vertex v, and aðvÞ gets updated until convergence.
In Step 1, each vertex v initializes aðvÞ ¼ 1=jV j and distrib-
utes aðvÞ to its out-neighbors by sending each out-neighbor
a message aðvÞ=dðvÞ. In Step i (i > 1), each vertex v sums
up the received message values, denoted by sum, and
computes aðvÞ ¼ 0:15=jV j þ 0:85 � sum. It then distributes
aðvÞ=dðvÞ to each of its out-neighbors.

To reduce communication, users may implement a mes-
sage combiner to specify how to combine messages targeted
at the same vertex vt, so that messages generated on a
machine W towards vt will be combined into a single mes-
sage by W locally, and then sent to vt. For example, in Pag-
eRank computation, the combiner can be implemented as
computing sum, since only the sum of incoming messages
is of interest in compute(�).

Pregel also allows users to implement an aggregator for
global communication. Each vertex can provide a value to
an aggregator in compute(�) in a superstep. The system
aggregates those values and makes the aggregated result
available to all vertices in the next superstep.

In an in-memory Pregel-like system, for each vertex v,
machine W ¼ hashðvÞ keeps the following information in
main memory: (1) the vertex state, which consists of idðvÞ,
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aðvÞ and activeðvÞ, and (2) the adjacency list GðvÞ. As vertex
degree is used by a few existing out-of-core systems (e.g.,
GraphChi [12], VENUS [3], FlashGraph [32]) to demarcate
the adjacency lists of different vertices, for the consistency
of presentation, we also include dðvÞ into the vertex state of
v, which is given as follow:

stateðvÞ ¼ ðidðvÞ; aðvÞ; activeðvÞ; dðvÞÞ: (1)

2.2 Vertex-Centric Systems

Besides Pregel, many other vertex-centric graph processing
systems have been developed. We categorized into three
classes (1) distributed in-memory systems, and (2) single-
machine out-of-core systems, and (3) distributed out-of-core
systems. For (1) and (3), network bandwidth is the bottle-
neck, and there are dedicated systems to improve communi-
cation throughput using high speed network. For (2), the
disk bandwidth is the bottleneck, and there are dedicated
systems to improve IO throughput using flash memory. We
now review each category of systems, and explain why they
are insufficient for the setting that GraphD targets.

Distributed In-Memory Systems. Since Pregel [15] is
only for internal use in Google, many open-source Pregel-
like systems emerge including Giraph [4], Pregel+ [30],
GraphX [7] and GPS [22]. Like Pregel, these systems keep
an entire input graph in memory during computation, and
also buffer intermediate messages in memory. However,
network communication is usually the performance bottle-
neck rather than CPUs, and thus GraM [27] utilizes RDMA-
based communication over Infiniband to greatly improve
the network bandwidth, allowing communication to over-
lap with computation to preserve the multi-core parallelism.

Unlike Pregel that adopts synchronous execution where
vertex communicates by message passing, GraphLab [6],
[13] adopts a shared-memory abstraction where a vertex
directly pulls data from its adjacent vertices/edges, and
asynchronous execution is supported to allow faster conver-
gence for algorithms where vertex values converge asym-
metrically. Since this work focuses on out-of-core systems,
we refer interested readers to [8], [14] for more discussions
on existing in-memory vertex-centric systems.

Recently, [25] developed tailor-made graph analytics
programs using MPI and OpenMP, which scale up to
thousands of nodes in the NCSA Blue Waters supercom-
puter, and outperform existing vertex-centric systems on a
small cluster. This demonstrates a tradeoff between user-
friendliness and efficiency of execution.

Single-Machine Out-of-Core Systems. These systems
partition vertices according to disjoint ranges of vertex ID,
and load one vertex partition to memory at a time for proc-
essing. GraphChi [12] needs to load all vertices in a parti-
tion, along with all their adjacent edges, into memory
before processing of the partition begins. X-Stream [21] only
loads all vertices in a partition into memory, while edges
are streamed on local disk. In both GraphChi and X-Stream,
a vertex communicates with each other by writing/reading
data on adjacent edges. VENUS [3] avoids the cost of writ-
ing data to edges, by letting a vertex obtain values directly
from its in-neighbors. However, VENUS is not open source.

While X-Stream does not require edges for a partition
to be pre-sorted like the other systems do, it needs to

scan every edges on disk in each iteration, even if only a
small number of vertices require computation. Unfortu-
nately, this inefficiency for sparse computation workload
is also inherited by its scale-out version, Chaos [20]. In
contrast, GraphChi and VENUS support selective schedul-
ing which skips scanning those vertex partitions that do
not contain active vertices, but the effectiveness is limited
since a partition needs to be scanned even if it contains
only one active vertex. As we shall see in Section 3.2,
GraphD provides an elegant approach to adapt disk IO
cost to the workload sparsity.

In the above systems, disk bandwidth is the performance
bottleneck. While GraphChi targets PC environment,
X-Stream also considers the setting of a high-end server
with many cores, and improves parallelism by streaming
edges on flash memory which provides higher IO band-
width. However, the key features of flash memory, i.e.,
significantly faster random access than magnetic disk, and
the capability of serving multiple concurrent and asynchro-
nous IO requests, are not utilized. Dedicated systems
like FlashGraph [32] and G-Store [11], and dedicated
approaches like [18] thus use multithreading to fully
exploit the bandwidth of flash memory and thus better
utilizing the many cores.

Like [25], [16] noticed that vertex-centric frameworks
gain user-friendliness at the cost of reduced performance,
and a tailor-made program can run much faster using the
SSD (or even just memory) of a laptop. There are also sys-
tems for processing big graphs in a shared-memory envi-
ronment, such as Ligra [24] and Galois [17], which
demonstrate superb performance due to high parallelism,
but require a machine with big RAM (e.g., 1TB).

Distributed Out-of-Core Systems. Compared with sin-
gle-machine systems, these systems only require each
machine to process a partition of the graph, and the disk
bandwidth of all machines are utilized in parallel. HaL-
oop [2] improves the performance of Hadoop for iterative
computation, by allowing a job to cache data to local disks
to avoid remote reads. However, HaLoop still adopts the
MapReduce model rather than the user-friendly vertex-cen-
tric model. Pregelix [1] formulates Pregel’s computation
model using relational operators like join and group-by,
which are relatively expensive. It then leverages a general-
purpose dataflow engine for execution. Giraph also sup-
ports out-of-core execution, but [1] reported that it does not
function properly.

Chaos [20] scales out X-Stream in order to use the aggre-
gated disk bandwidth in a cluster. Edge streaming work-
loads are distributed among multiple machines, and work
stealing is adopted for load balancing. Chaos’ design allows
high performance when machines in the cluster are con-
nected by high-speed network (e.g., 40GigE). This is because
Chaos spreads data over the machines, managed by a stor-
age sub-system, and every computing thread requests the
necessary data for processing from the storage subsystem in
the unit of chunks to allow sequential data access. The data
transmission cost, however, is not small when the network
speed (e.g., GigE) is not high enough. Thus, as reported
in [20], Chaos’ performance was undesirable using GigE,
which is typically used in the type of clusters GraphD is
designed for.
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3 DATA ORGANIZATION AND STREAMS

In this section, we describe the distributed semi-streaming
(DSS) model of GraphD, show that its memory cost is
OðjV j=jWjÞ and introduce the design of its disk-resident
streams.

3.1 Distributed Semi-Streaming Model

First consider Pregel’s memory cost. For simplicity, we
assume that the types of vertex ID, vertex value, adjacency
list item, and message all have constant size1. Since
activeðvÞ and dðvÞ also have constant size, stateðvÞ defined
in Eq. (1) has constant size.

Recall that Pregel keeps the OðjV jÞ vertex states and
OðjEjÞ adjacency list items in memory. Let us denote the set
of messages currently in the system by M, where a message
is buffered either on the sender-side or on the receiver-side.
Then, OðjMjÞ memory space is also required for keeping
messages. Therefore, the total memory space required by
Pregel is OðjV j þ jEj þ jMjÞ.

Usually, OðjEjÞ is much larger than OðjV jÞ. For exam-
ple, a user in a social network can easily have tens of
friends. Also, OðjMjÞ is large. For example, in PageRank
computation, one message is transmitted along each edge
in a superstep, and thus OðjMjÞ ¼ OðjEjÞ; while in the tri-
angle finding algorithm of [19], a superstep can transmit
up to OðjEj1:5Þ messages. Therefore, the dominating mem-

ory cost is contributed by adjacency lists (i.e., OðjEjÞ) and
messages (i.e., OðjMjÞ). GraphD streams adjacency lists
and messages on local disks, keeping only the OðjV jÞ ver-
tex states in memory. We remark that even the OðjV jÞ
vertex states can be kept on local disks, as a vertex can be
streamed along with its adjacent edges for vertex-centric
computation at each time; however, as we shall see in
Section 3.2, maintaining vertex states in memory allows
GraphD to skip reading the edges of inactive vertices,
which is important when the computation workload is
sparse.

The OðjV jÞ vertex states may still be too large to fit in the
memory of a single machine. Since GraphD is a distributed
system, each machine only needs to keep a portion of vertex
states. GraphD follows a model called distributed semi-
streaming,2 where each machine W only keeps the states of
all its assigned vertices, V ðWÞ, in its memory, and treats
their adjacency lists and incoming and outgoing messages
as local disk streams.

It remains to show that DSS distributes the vertex states
evenly among the jWj machines, i.e., each machine holds no

more than Oð jV j
jWjÞ vertex states with a small constant (e.g., 2).

We now prove this property, regarding the machine
number jWj as a constant.
Lemma 1. Assume that hashð�Þ is well chosen so that a vertex is

assigned to every machine with equal probability, then with
probability of at least 1�Oð 1

jV jÞ, it holds that maxW2WjV ðWÞj
is less than 2 jV j

jWj.

Proof. First, consider a particular machine W . Since every

vertex is hashed to W with probability p ¼ 1
jWj, the total

number of vertices that are hashed toW (i.e., jV ðWÞj) con-
forms to a binomial distribution with mean m ¼ jV jp and
variance s2 ¼ jV jpð1� pÞ < jV jp ¼ m.

According to Chebyshev’s inequality, we have

Pr
����jV ðW Þj � m

��� � m
�
� s2=m2:

Since s2 < m, the R.H.S. is less than 1=m. Moreover, the
L.H.S. is at least PrðjV ðW Þj � 2mÞ. Therefore, we obtain

PrðjV ðW Þj � 2mÞ < 1=m: (2)

Since m ¼ jV j
jWj,

1
m
¼ jWj

jV j ¼ Oð 1
jV jÞ is a very small number. For

example, when we process a billion-node graph using a
cluster of 20 machines, jWj is only 20 but jV j is in the
order of 109, and thus 1=m is in the order of 10�7–10�8.

We now consider all machines in W, and proceed to
prove our lemma:

Pr max
W2W

jV ðWÞj < 2
jV j
jWj

� �

¼ Pr max
W2W

jV ðWÞj < 2m

� �

¼ Pr
^

W2W

n
jV ðW Þj < 2m

o !

� 1�
X
W2W

PrðjV ðWÞj � 2mÞ (using union bound)

> 1� jWj
m

(using Eq. (2)):

The lemma is proved by noticing that jWj
m

¼ jWj2
jV j ¼ Oð 1

jV jÞ.
For example, when jWj is 20 and jV j is in the order of

109, jWj2
jV j is in the order of 10�6–10�7. tu

We additionally require that the main memory of a
machine be large enough to hold the state stateðvÞ and adja-
cency list GðvÞ of any single vertex v, so that v can access
them in v:compute(�). We add this constraint because GðvÞ of
a high-degree vertex v could require more memory space

than Oð jV j
jWjÞ (i.e., the bound of Lemma 1), but this constraint

is reasonable given the RAM size of a commodity PC today,
and it is also required by existing out-of-core systems such
as GraphChi and Pregelix.

3.2 Graph Organization and Edge Streams

While GraphD may load data from and write results to
HDFS, during iterative computation, GraphD only sequen-
tially reads/writes binary streams on local disks for effi-
ciency. In GraphD, a stream is implemented as a file, which
is sequentially read (or appended) using an in-memory
buffer B of size b, and B is refilled (or flushed) when its end
is reached. We set b ¼ 64 KB which is empirically tested to
be sufficient to exhibit sequential IO.

When users specify GraphD to load an input graph from
HDFS, the vertices get partitioned among all machines like
in Pregel (recall Section 2.1), where each machine W saves
the adjacency lists of its assigned vertices, V ðWÞ, to its local
disk as an edge stream, denoted by SE . Meanwhile, the

1. These data types are specified by users through C++ template
arguments, and can have variable sizes in reality (e.g., vertex ID can be
a string)

2. We name the model as DSS due to its similarity to the semi-
streaming computation of external-memory graph algorithms.
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states of the assigned vertices, V ðWÞ, are kept in memory
(for computation) and also written to local disk (for subse-
quent local loading, see below). Optionally, if the graph was
previously loaded from HDFS by another job, users may
also specify GraphD to let each machine directly load the
previously saved vertex states to memory.

In GraphD, each machine organizes its in-memory vertex
states with an array A, as illustrated in Fig. 1. Vertices in A
are ordered by vertex ID (e.g., 2, 22, 32, 42, . . . in Fig. 1), and
the edge stream SE simply concatenates their adjacency lists
in the same order. In a superstep, compute(�) is scheduled to
be called on the active vertices in A in order. Since a vertex v
needs to access GðvÞ in v:compute(�), the next dðvÞ items are
sequentially read from SE to form GðvÞ. Thus, each super-
step only sequentially reads SE once. If topology mutation
is enabled, each superstep would digest an old edge stream
and generate a new edge stream.

Na€ıve streaming of an entire edge stream is inefficient if
only a small number of vertices are active. For example, X-
Stream adopts this method and [21] admitted that X-Stream
is inefficient for graphs whose structure requires a large number
of iterations.

In Fig. 1, the edges of inactive vertices 22 and 32 can
actually be skipped if they receive no message. To imple-
ment this idea efficiently, GraphD supports a function skip
(k), which skips the next k items from the stream. Referring
to Fig. 1 again, after vertex 2 is processed, we may skip the
edges of vertices 22 and 32 by calling skip(4), where 4 is
computed by adding their degrees dðvÞ (i.e., 3 and 1 in
array A). However, it is inefficient to perform a random
disk read for each time skip(�) is called, especially when
there are many small series of inactive vertices in A: the
many random reads could be more costly than streaming
the whole SE .

We want to skip a long series of inactive vertices with a
random read, but still achieve sequential disk bandwidth in
dense workloads. We now describe how we achieve this
goal. To achieve this goal, when streaming SE , skip(�) avoids
reading data if after the skipping, the position to read data
from is still in the stream buffer B; otherwise, B is refilled
starting from the new read-position. Obviously, this
approach limits the number of random reads to be at most
that incurred when streaming the whole SE .

3.3 Message Streams

Overview. Each machine maintains multiple edge streams on
its local disk, including one incoming message stream (IMS),
denoted by SI ; and jWj outgoing message streams (OMSs) SO

i

ði ¼ 1; 2; . . . ; jWjÞ, where each OMS SO
i is used to buffer

those messages destined at vertices on the ith machine,

denoted by Wi. When a vertex v sends a message to
another vertex u in v.compute(�), we append the message to
OMS SO

hashðuÞ.
To overlap computation with communication, we require

each OMS to support concurrent data appending (at the tail)
and data fetching (at the head). This is because messages are
constantly generated by vertex-centric computation in high
velocity, and have to be buffered into disk streams to con-
trol memory consumption; concurrently, the buffered mes-
sages also need to be fetched from the disk streams and sent
to target machines in batches to fully utilize the network
bandwidth. As a result, an OMS cannot be implemented
simply as an append-only file like SE , and we device a new
structure splittable stream to achieve this goal. We also
design a ring-based sending strategy to ensure balanced
network traffic, and memory-efficient approaches for mes-
sage combining and receiving through external memory
(EM) merge-sort.

We will show that despite the additional in-memory
buffers required by disk streams and message transmission,
our approach keeps the memory bound established by
Lemma 1. We also remark that this approach is just a base-
line, and our ID recoding technique to be presented in
Section 5 further eliminates the need of maintaining the IMS
SI and performing any EMmerge-sort.

3.3.1 Outgoing Message Streams

In our target setting, disk streaming bandwidth is much
higher than network bandwidth. Therefore, newly-generated
messages are appended to OMSs first for later fetching and
sending, and as long as message appending and transmission
are well overlapped, disk IO cost is hidden by the communi-
cation cost. We now describe the OMS structure and how
bufferedmessages are sent.

OMS Structure. We implement an OMS as a splittable
stream that supports concurrent data appending and
fetching. Specifically, a splittable stream S breaks a long
stream of data items into multiple files F1; F2; . . . ; Fj, and
it appends data items to the last file Fj in a streaming
manner. Given a file size parameter B, S appends a data
item o by checking whether Fj’s size will be larger than
B after appending o: (1) if so, Fj is closed and a new file
Fjþ1 is created for appending o; (2) otherwise, o is
directly appended to Fj. It is not difficult to see that
each file either has size at most B, or contains only one
data item whose size is larger than B. We shall discuss
how to set B shortly.

Since S writes to only one file at any time in a streaming
manner, S requires only b ¼ 64 KB memory space. In
GraphD, since every OMS is organized as a splittable
stream, the jWj OMSs in a machine take jWj � b bytes of
memory in total. Even when jWj ¼ 1000, all OMSs take
merely 64 MB of RAM.

Sending Messages in OMSs. When an OMS SO
i is writ-

ing Fj, messages in F1; . . . ; Fj�1 can be sent to machine Wi

in parallel. As Fig. 2 shows, in GraphD, each machine Wi

maintains an in-memory sending buffer Bsend. A fully-
written file split Fk of an OMS SO

j is sent to Wj by first load-
ing messages in Fk to Bsend, which are then sent toWj in one
batch. Obviously, the buffer size jBsendj should be at least
the largest possible size of a file split.

Fig. 1. Vertex states and edge stream of a machineW.
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We shall discuss how to set jBsendj shortly. Now, we
describe how we set B. Obviously, the smaller B is, the finer-
grained each file split is, and thus the less likely that message
sendingwill be stalled on a file that is being appended. How-
ever, since messages are sent in batches of size around B, B
cannot be too small as sending messages in small batches is
inefficient. GraphD sets B as 8MB by default, which is tested
to strike a good balance between the two aspects mentioned
above, and keeps file number tractable.

Sending Strategies. Referring to Fig. 2 again, each
machine Wi orders the jWj OMSs into a ring, where each
OMS keeps track of the batch number of the last file that has
been sent (resp. fully written), denoted by ns (resp. nw). For
example, for SO

j in Fig. 2 which is currently appending mes-
sages to F5, ns ¼ 2 and nw ¼ 4. Moreover, each machine
keeps track of the position in the ring, denoted by pos, from
whose OMS (i.e., SO

pos) the previous message file is selected
to be loaded to Bsend for sending.

If message combiner is not used, we scan through the
ring from position pos, until an OMS SO

j is reached whose
ns < nw (i.e., there is at least one file to send). There are two
possible cases.

� Case 1: if such an OMS SO
j is found before the scan

reaches position pos again, we load Fnsþ1 to Bsend for
sending, and then update pos as j. For example, for
SO
j in Fig. 2, we only send F3. Then, the same scan

operation is repeated starting from the updated posi-
tion in the ring. Note that even if SO

j has more than
one file to send to Wj (e.g., F4 in Fig. 2), the next scan
will pick a file from another OMS SO

j0 ðj0 6¼ jÞ for
sending toWj0 (if such a j0 exists), to avoid communi-
cation bottleneck on the receiver-side. For the same
reason, different machines will initialize position pos
with different values when a job begins.

� Case 2: if the scan reaches position pos again without
finding a valid OMS, then no OMS has a file to send,
and thus the scanning thread goes to sleep. The
thread is awakened to repeat the scan whenever a
new message file is written.

On the other hand, if message combiner is used, we
adopt a different scanning strategy to maximize the effect of
message combining: if the scan locates a valid OMS, all its
message files from Fnsþ1 to Fnw are combined for sending in
one batch. Specifically, the messages are first merge-sorted
(i.e., grouped) by destination vertex ID; then, another pass
over the sorted messages combines each group into one
message and appends this message to Bsend for sending.
The strategy is effective, since (1) when all active vertices
have called compute(�) in the current superstep, OMSs are
finalized and our strategy essentially combines all remain-
ing messages in each OMS, while (2) otherwise, message

combining runs in parallel with vertex-centric computation,
and thus does not increase the computation time.

Only combined messages are appended to Bsend. GraphD
sets jBsendj as B by default, but since messages for combin-
ing may come from multiple files (size of each bounded
by B), jBsendj may need to be increased beyond B. However,
since there are at most one combined message for each
vertex in the target machine, jBsendj is upper bounded
by OðmaxW2WjV ðWÞjÞ. Thus, if combiner is used, GraphD
increases jBsendj to OðmaxW2WjV ðWÞjÞ (if originally

smaller). Note that jBsendj keeps the Oð jV j
jWjÞ memory bound

established by Lemma 1.

Also, merge-sorting message files consumes only a small
constant amount of memory space. To see this, assume that
we sort files F1; F2; . . . ; Fn by k-way merge-sort, then it takes
dlog kne sequential passes over all the messages. At any time
during the merge-sort, only one merge operation is running
where (at most) k sorted message files are being merged
into one larger message file. Since we treat each sorted mes-
sage file as a stream when reading/appending messages,
the merge-sort uses ðkþ 1Þ small in-memory buffers, which
takes ðkþ 1Þbmemory space.

GraphD sets k to 1000, and thus a merge-sort operation
takes merely ð64 MB þ 64 KBÞ memory space. Moreover,
the large value of k allows merge-sort to take only one pass
even for very large graphs, since the number of message
files to combine is usually smaller than k ¼ 1000. To see
this, recall that each message file has size around B ¼ 8 MB,
and thus k files have size around 8 GB, which is quite large
for an OMS (which only contains messages transmitted
between one pair of machines).

3.3.2 Incoming Message Stream

Since outgoing messages are loaded to Bsend and sent in
batches, each machine also needs to maintain an in-memory
receiving buffer Brecv with jBrecvj ¼ jBsendj. In each machine,
a receiving thread listens on the network, and uses Brecv to
receive one message batch at a time. All received message
batches constitute the content of the IMS SI for use by the
next superstep.

In a superstep, each active vertex v calls compute(msgs),
where msgs is obtained from SI . Since the vertex-state array
A and edge stream SE are already ordered by vertex ID, we
require messages in SI also to be ordered by destination
vertex ID, so that vertex-centric computation may simply
proceed in one pass over A by sequentially reading from
both SI and SE . Specifically, to call v.compute(msg), v may
read the next dðvÞ items from SE to obtain GðvÞ, and sequen-
tially read all messages targeted at v from SI and append
them to msgs. The sequential read ends when a message tar-
geted at u > v (or the end of SI) is reached.

However, the order that messages in SI are received
depends on the actual communication process. We adopt the
following approach tomake SI ordered: whenever amachine
receives a batch of messages in Brecv, it sorts the messages by
destination vertex ID, and then writes the sorted messages
to a file on disk; when all incoming messages for the current
superstep are received, the sorted message files are then
merged into one sorted message file SI by merge-sort. Like
in message combining, merge-sort takes merely ð64 MB þ

Fig. 2. Sending messages in OMSs.
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64 KBÞ memory space. Moreover, since each received mes-
sage batch has size around 8 MB, when there are no more
than 8 GB messages, the message files are simply merged;
merge-sort is unlikely to take more than 2 passes since this
requires amachine to receive over 8 TBmessages.

3.4 Cost Analysis & Other Issues

We now show that the total memory cost incurred by IMS
and OMSs on each machine is a small constant and thus
does not influence the OðjV j=jWjÞ memory bound estab-
lished by Lemma 1, assuming a small cluster where
jWj < 1000. For communication, each machine maintains
two buffers Bsend and Brecv which take 2B ¼ 16 MB memory
space. For computation, appending messages to the OMSs
needs jWj � b < 64 MB memory, and reading SE and SI

needs 2b ¼ 128 KB memory. When combiner is used,
the merge-sort for combining messages, and the merge-sort
for constructing SI , each takes ð64 MB þ 64 KBÞ memory.
Therefore, each machine requires around 200 MB memory
besides that for the vertex-state array A, well affordable by
a modern PC.

In each superstep, all the streams SE , SI and SO
i are

sequentially read and/or written for only one pass, while
the merge-sort for combining messages (resp. for construct-
ing SI ) takes one (or for a giant graph, two) additional pass
over the outgoing (resp. incoming) messages. Thus, the disk
IO cost is low.

Data loading from HDFS is similarly processed as mes-
sage passing, except that data items in an OMS and an IMS
are now vertices (along with their adjacency lists) rather
than messages. This additionally requires that jBsendj and
jBrecvj be at least large enough to hold the highest-degree
vertex and its adjacency list during loading. The received
vertices are merge-sorted by vertex ID into SI , which is then
split into A and SE in one pass.

GraphD also supports algorithms that perform topology
mutation. Edge mutations are performed in v.compute(�) by
directly updating GðvÞ, which is written to a new local edge
stream. Vertex mutations are performed after vertex-centric
computation, where new vertices are appended to the ver-
tex-state array A, and deleted vertices are simply masked in
A. Our design of streams also naturally supports check-
pointing, by periodically backing up current streams to
HDFS for later recovery.

4 PARALLEL FRAMEWORK OF DSS

We now introduce how GraphD utilizes the components
described in Section 3 for parallel graph computation, to
overlap computation (disk streaming) with communication
(message transmission).

Specifically, eachmachine runs three units in parallel: (1) a
sending unit Us that sends outgoing messages; (2) a receiving
unit Ur that receives incoming messages; and (3) a computing
unit Uc that performs vertex-centric computation (to generate
messages). Parallelism within each machine is realized
through the interaction of the three units as illustrated by
Fig. 3, which we shall explain in more detail in the following
paragraphs. We first present our two (realistic) assumptions
that our parallel framework lies on: (i) messages transmitted
on a channel between a pair of machines are received in the

same order as they were sent, which is guaranteed by TCP
connections; (ii) we use condition variables to avoid a waiting
thread from occupying CPU resources, which is imple-
mented by std::condition_variable of C++ 11.

Synchronization Between Supersteps. GraphD imple-
ments Pregel’s synchronous execution model. Since net-
work bandwidth is the bottleneck, it is unreasonable to
delay the transmission of messages generated in Step i, by
transmitting messages generated in Step ðiþ 1Þ. For exam-
ple, consider Step i in Fig. 3: machine W3 finishes receiving
messages (by Ur) earlier than W2 and starts to compute
Step ðiþ 1Þ (by Uc). If W3 transmits the generated messages
(by Us) immediately, its messages towards W2 will compete
for the network bandwidth and delay W2’s progress
for Step i since W2 is still receiving messages generated
in Step i.

Therefore, the sending unit Us of every machine should
block the sending of messages generated by its computing
unit Uc in Step ðiþ 1Þ, until all messages generated in Step i
have been received by the receiving units Ur of all machines.
GraphD guarantees this property, by letting Ur in each
machine synchronize with the receiving units of all other
machines, after it has received all the messages generated in
Step i towards its machine (we will discuss how Ur deter-
mines this condition shortly). After the synchronization, Ur

guarantees that all messages generated in Step i have been
transmitted, and thus it notifies Us (through a condition var-
iable) to send messages generated in Step ðiþ 1Þ.

Referring to Step i in Fig. 3 again, Ur of all machines syn-
chronize right after they finish receiving messages, as indi-
cated by the first dashed line marked with “Ur sync” (2nd
horizontal line). Now consider W3: even though Uc starts
computing Step ðiþ 1Þ before “Ur sync”, Us blocks until Ur

passes “Ur sync”.
Message Receiving. We now explain how Ur decides

whether it has received all messages of Step i. Specifically,
whenever Us in a machine Wj has sent all its messages
towards another machine Wk (i.e., Wj’s OMS SO

k is
exhausted), it will send a special “end tag” to Wk. As a
result, a machine Wk just needs to count the number of end
tags received, and if it reaches jWj, messages from all
machines must have been received. This is correct because
the previously mentioned “Ur sync” guarantees that all
messages (including end tags) generated in Step i must be

Fig. 3. An illustration of the parallel framework.
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transmitted before any message (including an end tag) gen-
erated in Step ðiþ 1Þ.

Here, Us decides that it has exhausted its OMS SO
k (and

sends an end tag to Wk) if the following two conditions are
both met: (1) Uc has finished vertex-centric computation for
Step i, and will thus generate no more messages of Step i;
and (2) there is no more message file in OMS SO

k for sending.
Vertex-Centric Computation. To call v.compute(msgs) in

Step ðiþ 1Þ, we need to guarantee that msgs contains all the
messages targeting v from Step i. Therefore, when Uc fin-
ishes its computation of Step i, it has to be blocked until Ur

has received all messages towards it generated in Step i;
then Ur notifies Uc to start computing Step ðiþ 1Þ. Referring
toW3 in Fig. 3 again, Uc finishes computing Step imuch ear-
lier than Ur finishes receiving messages; but Uc has to wait
for Ur to get all necessary messages and notify it, before
starting to compute Step ðiþ 1Þ.

However, unlike Us, Uc does not need to wait till all
receiving units are synchronized, and may start generating
messages of Step ðiþ 1Þ earlier, although these messages
will only be sent by Us after the synchronization. Referring
to W3 in Fig. 3 again, Uc starts computing Step ðiþ 1Þ before
“Ur sync”.

To summarize, in Step i, Ur first keeps receiving mes-
sages until jWj end tags are received, then notifies Uc that it
is allowed to compute Step ðiþ 1Þ, then synchronizes with
the receiving units of the other machines; and if the job
should continue, Ur then notifies Us that it is allowed to
send messages for Step ðiþ 1Þ.

The benefit of letting Uc start computing Step ðiþ 1Þ ear-
lier is that, when Us starts to send messages of Step ðiþ 1Þ,
it can readily find fully-written OMS files for sending, and
thus network bandwidth can be fully utilized.

Synchronization of Global Information. When Uc of a
machineW performs vertex-centric computation in Step i, it
aggregates data to its local aggregator, and updates local
control information such as whether W has sent any mes-
sage and whether any vertex is active after calling compute
(�). These data need to be synchronized to decide whether to
continue computing Step ðiþ 1Þ, and to obtain the global
aggregator value for use by compute(�) in Step ðiþ 1Þ. We let
the computing units of all machines synchronize these
global data as soon as they finish their vertex-centric com-
putation, and there is no need to wait for the slower mes-
sage transmission to complete. For example, in Fig. 3, we
can see that in each superstep, synchronization among Uc of
all machines, indicated by dashed line marked with “Uc

sync”, is before “Ur sync”. This allows Uc to start computing
a new superstep much earlier than the synchronization
among receiving units. For example, in Fig. 3, W3 starts
computing Step ðiþ 1Þ (by Uc) before “Ur sync” of Step i. If
Uc decides that the job should terminate after synchronizing
with other computing units, it signals Us and Ur to terminate
after they finish processing their current superstep, and
then terminates itself.

5 THE ID-RECODING TECHNIQUE

Many Pregel algorithms use message combiner to reduce
communicationworkload. For these algorithms,GraphD sup-
ports amore efficient executionmode, which uses a technique

called ID-recoding to (1) directly digest incomingmessages in
memory which eliminates SI , and to (2) combine outgoing
messages in memory which eliminates the need of external-
memory merge-sort on OMS file splits, while (3) retaining the

Oð jV j
jWjÞ memory bound established by Lemma 1. As a result,

each superstep only requires one sequential pass over the
edge stream SE and over the generated messages (through
message appending to OMSs). In contrast, Pregelix performs
expensive external-memory sort and group-by operations
even for algorithmswhere combiner applies.

Vertex ID Recoding. The key idea of ID recoding is to
establish an efficient-to-compute one-to-one mapping
between the ID of a vertex and its position in the state array
A. Before introducing how GraphD establishes this map-
ping, we first present our underlying assumptions. In
GraphD, machines are numbered by 0; 1; . . . ; jWj � 1, and
the vertex IDs are to be recoded into 0; 1; . . . ; jV j � 1. When
GraphD runs in recoded mode, it uses the vertex partitioning
function hashðvÞ ¼ idðvÞmodulo jWj.

As an illustration, Fig. 4 shows the vertex state arrays A
in a cluster of 3 machines, where for each vertex, we show
its old ID and new (i.e., recoded) ID. We can see that the old
IDs are sparsely numbered as 33, 43, 53, . . ., and are recoded
into dense new IDs 0, 1, 2, . . .. In the recoded mode, new
IDs are used as the actual vertex ID, and our recoding
scheme guarantees that after recoding, the worker of a ver-
tex v can still be computed by hashing v’s (new) ID, i.e.,
hashðvÞ ¼ idðvÞ modulo jWj. For example, for the second
vertex in A of Machine 2, its new ID is 5, and 5 modulo 3 is
equal to 2, which is exactly the machine ID.

For a vertex at position pos of array A in Machine i, we
can compute its new ID as ðjWj � posþ iÞ. For example, in
Fig. 4, the vertex whose old ID is 86 is at position 1 of array
A in Machine 2, and thus its new ID is computed as
ð3 � 1þ 2Þ ¼ 5. Moreover, given the new ID of a vertex, id,
on Machine i, we can compute its position in A as bid=jWjc.
For example, in Fig. 4, the vertex whose new ID is 5 (in
Machine 2) is at position b5=3c ¼ 1.

Preprocessing. To run a job in recoded mode, we need to
preprocess the graph to assign its vertices with new IDs
0; 1; . . . ; jV j � 1. We now describe our preprocessing algo-
rithm, which is essentially a GraphD job running in the
basic mode as presented in Section 3, and thus requires only
Oð jV j

jWjÞmemory on each machine.
During preprocessing, old IDs are used as the vertex ID

for vertex-to-machine assignment and vertex-to-vertex mes-
sage passing. After the input graph is loaded, each machine
Wi scans its array A and assigns each vertex (at each posi-
tion pos) a new ID ðjWj � posþ iÞ. However, for each vertex
v, the neighbor IDs in GðvÞ (which are stored in SE) are still

Fig. 4. Example of ID recoding.
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the old IDs. For example, in Fig. 4, we show the adjacency
list of the vertex at position 3 in array A of Machine 2, whose
neighbors are vertices with old IDs 33, 76, 119, etc. (i.e., the
gray vertices in Fig. 4); even though the vertex is assigned a
new ID 11, its adjacency list items in SE are still the old IDs
33, 76, 119, etc. We need to replace them with their new IDs,
0, 4, 2, etc., since new IDs will be used for message passing
in recoded mode.

Recoding the IDs in SE (i.e., adjacency lists) takes 3
supersteps. Let us denote the old (resp. new) ID of a vertex
v by idoðvÞ (resp. idnðvÞ). In Step 1, each vertex v sends idoðvÞ
to every out-neighbor u 2 GðvÞ asking for idnðuÞ. For exam-
ple, the vertex with idoðvÞ ¼ 152 in Fig. 4 sends messages to
neighbors 33, 76, 119, etc., asking for their new IDs 0, 4, 8,
etc. In Step 2, a vertex u responds to each requester idoðvÞ by
sending idnðuÞ to it. Continuing with the previous example,
when vertices 33, 76 and 119 receive vertex 152’s ID, they
will send their new IDs 0, 4 and 8 to vertex 152, respectively.
Finally, in Step 3, each vertex v simply appends the received
new neighbor IDs to a new edge stream SE

rec, which is the
edge stream for use in recoded mode. Continuing with the
previous example, vertex 152 simply appends the received
new neighbor IDs 0, 4, 8, etc. to SE

rec. Note that the whole
recoding process sends only OðjEjÞmessages.

For an undirected graph, we can skip Step 1 since a ver-
tex u can directly send idnðuÞ to each neighbor v 2 GðuÞ.

Execution in Recoded Mode. After a graph is recoded as
mentioned above, state array A and stream SE

rec of each
machine are already on its local disk; our recoded mode
thus simply lets each machine load A to memory, and
stream SE

rec on local disk.
Additionally, users are required to specify an identity ele-

ment e0, which when combined with any message m, gives
the combined message whose value is still m. For example,
e0 ¼ 0 for PageRank computation since e0 þm ¼ m; while if
the combiner’s operation is to take minimum rather than
sum, e0 can be set as1.

� In-Memory Message Digesting. In recoded mode, Ur

now directly digests messages in memory, eliminating the
need of constructing SI using EM merge-sort. To achieve
this goal, in each step i before receiving messages, Ur first
creates an in-memory array with jV ðW Þj message elements,
denoted by Ar. Here, Ar½pos� refers to the combined mes-
sage targeting the vertex at A½pos�. Each element in Ar is ini-
tialized as e0. For example, for Machine 2 in Fig. 4, Ur

creates an array Ar where Ar½1�, Ar½2�, Ar½3� and Ar½4� corre-
sponds to combined messages to be received by vertices 2,
5, 8 and 11, and if the job performs PageRank computation,
all elements in Ar are initialized as 0.

When a batch of messages is received into Brecv, for each
message, we compute the position of its destination vertex
u in array A from u’s ID, i.e., pos ¼ bidðuÞ=jWjc, and then
combine the message to Ar½pos�. For example, if Machine 2
in Fig. 4 receives a message with value 0.2 targeting vertex 5,
0.2 will be simply added to Ar½1� since pos ¼ b5=3c ¼ 1.

After all messages generated in Step i are received and Uc

starts processing Step ðiþ 1Þ, the corresponding vertex of
A½pos� is regarded as having received messages only if
Ar½pos� 6¼ e0, in which case compute(msgs) is called on the
vertex with msgs containing only the combined message
Ar½pos�. Continuing with our previous example about

PageRank computation, now Ar½pos� equals the sum of
messages received by the vertex at A½pos�; and Ar½pos� ¼ 0
(i.e., e0) implies that the vertex has no message.

Finally, when Uc finishes computing Step ðiþ 1Þ, it frees
Ar from memory as messages from Step i are no longer
needed.

Let us define AðiÞ
r as the array Ar that is created by Ur for

receiving messages generated in Step ði� 1Þ and then freed
by Uc after it finishes computing Step i. Then, two arrays of
Ar coexist in any superstep: in Step i, Ur creates Aðiþ1Þ

r and
updates it with received messages (for use by Uc in
Step ðiþ 1Þ), while Uc obtains incoming messages from AðiÞ

r

for computation. The two arrays require OðjV ðW ÞjÞ addi-
tional memory, which still keeps the Oð jV j

jWjÞ memory bound
established by Lemma 1.

� In-Memory Message Combining. Similarly, Us always
maintains an in-memory array with maxW2WjV ðW Þj mes-
sage elements, denoted by As, for combining outgoing mes-
sages. This does not breach the Oð jV j

jWjÞ memory bound of
Lemma 1.

Each element of As is initialized as e0. Recall that Us com-
bines and sends those messages from one OMS (i.e.,
towards one destination machine) at a time. To combine a
set of messages towards a machine Wi, for each message
that targets at a vertex u, Us computes its position in array A
of the destination machine Wi, i.e., pos ¼ bidðuÞ=jWjc, and
then combines the message to As½pos�. For example, assume
that vertices 5 and 8 in Machine 2 in Fig. 4 both send mes-
sage 0.2 to vertex 4 in Machine 1; since pos ¼ b4=3c ¼ 1,
both 0.2 values are added to As½1� giving 0.4.

After all messages in an OMS are combined to As, for
each message element As½pos� 6¼ e0, Us attach the message
value with the ID of its destined vertex, i.e., jWj � posþ i (i
is the destination machine ID); Us then appends the target-
labeled message to Bsend for sending. Continuing with the
previous example where As½1� ¼ 0:4 in Machine 2, then Us

will label this combined message with the destined vertex
ID 4, computed as 3 � 1þ 1.

To guarantee that all elements of As are e
0 before combin-

ing the next batch of message files, Us sets each As½pos�
(6¼ e0) back to e0 after the corresponding message gets
appended to Bsend.

� Topology Mutation. Topology mutation is handled
similarly as in the basic mode, with a change for vertex
addition. Specifically, in a superstep, after vertex-centric
computation, Uc first recodes the IDs of the newly added
vertices by synchronizing with the computing units of
other machines, using the same method as preprocessing
does; Uc then appends these recoded vertices to A. The
overhead caused by the above intra-superstep id-recoding
operation is proportional to the number of vertices added.

6 EXPERIMENTS

This section reports the results of our empirical study of
GraphD’s performance, which is compared with other exist-
ing systems, under various hardware environments.

6.1 Experimental Setup

Datasets. Table 1 lists the graph datasets used for our eva-
luation. There are five real datasets: two directed web
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graphs WebUK3 and ClueWeb4; two social networks Twitter5

(directed) and Friendster6 (undirected); and an RDF graph
BTC.7 To test system scalability, we also generated a giant
synthetic graph Kron-32-16 using Graph 500 Kronecker
graph generator,8 where scale is 32 (i.e., there are 232 verti-
ces), and edge factor (i.e., jEj/jV j) is 16. We removed repeti-
tive edges, and thus, the actual jEj/jV j is 15.83.

Algorithms. We evaluate the performance of the systems
using three well-studied Pregel algorithms: PageRank com-
putation [15], single-source shortest path (SSSP) computa-
tion [15] and the Hash-Min algorithm of [31] for computing
connected components.

PageRanks is only evaluated on directed graphs since it
target vertices with directed links; Hash-Min is only evalu-
ated on undirected graphs where connected component is
defined; while SSSP is evaluated on both directed and undi-
rected graphs.

Systems. The distributed out-of-core systems we com-
pare against include Pregelix (Release 0.2.12), HaLoop and
Chaos. The single-machine systems we compare against
include GraphChi and X-Stream (v1.0). We also report the
performance of representative in-memory systems, Pregel+
and Giraph (1.1.0), as a reference to measure the disk IO
overhead incurred by out-of-core execution. The source
code of GraphD and all the applications evaluated can be
found at: http://www.cse.cuhk.edu.hk/systems/graphd.

6.2 Performance on a Cluster of PCs

Recall that GraphD target a small cluster of commodity PCs
connected by Gigabit Ethernet. This set of experiments com-
pare existing systems under this environment. We ran the
systems using 16 desktop PCs in a lab classroom, each with
four 3.40 GHz cores (Intel Core i5-4670), 8 GB RAM and a
320 GB disk. The PCs are connected by an unmanaged
switch, and we observed that the 1gbps network bandwidth
cannot be able to fully reached.

In our previous description of GraphD, we assumed that
each machine runs only one process which consists of three
threads for the units Us, Uc and Ur. In order to better utilize
the multi-core processors, we actually ran multiple pro-
cesses on each machine. Here, each PC runs 2 processes
(and thus streams 2 edge streams) concurrently. Running
more processes does not help since the network and disk
bandwidths are already saturated.

We do not include Chaos in this set of experiments, since
Chaos is designed to run with high-speed network like
40GigE. As we shall see, in Section 6.7, the performance of
Chaos is much poorer than other systemswhenGigE is used.

We denote the normal (resp. recoded) mode of GraphD
by “GDBasic” (resp. “GDRecoded”). GDBasic, Pregel+, and
Pregelix need to load graph data from HDFS; while GDRe-
coded only needs to let each machine load data from local
disk. In contrast, HaLoop, GraphChi and X-Stream directly
scan the disk-resident graph in each iteration, and there is
no data loading phase.

Table 2 reports the running time of various systems on
our PC cluster. For each system that loads data, we report
the time as “loading time” + “computation time”. For exam-
ple, for Pagerank on WekUK, GDBasic takes 628.9 s to load
the graph, and 1189 seconds to run computation for 10
supersteps, while HaLoop takes 19954 s for 10 supersteps
and there is no loading phase.

Among the systems, GDRecoded needs to recode input
graph first, and GraphChi needs to preprocess input graph
into shards. There preprocessing times are reported in
grey font in Table 2. For example, for Pagerank on WekUK,
GDRecoded first recodes input graph by using 651.4 s to load
it, and 841.7 s for the actual recoding, after which the recoded
graph can be loaded from local disks in 1.74 seconds, and 10
supersteps of computation takes 982.3 s; also, GraphChi needs
to spend 2114 s to shard WekUK, before the actual computa-
tion that takes 3614 s.

For each experiment, we also mark the smallest
“computation time” among all systems in red font labeled
with a star.

PageRank. Table 2a reports the results of PageRank over
three directed graphs. We only ran 10 iterations on WebUK
and Twitter and 5 supersteps on ClueWeb, since each itera-
tion takes roughly the same time, and each iteration is very
time-consuming for all the other out-of-core systems that
we compared with.

As Table 2a shows, Pregel+ can only process Twitter in
our PC cluster due to the limited memory space, and it is
even slightly slower than GDBasic and GDRecoded. This is
because, network bandwidth is the bottleneck rather than
disk IO, and GraphD’s parallel framework fully hides the
computation cost inside the communication cost; while in
Pregel+’s implementation, message transmission starts after
computation finishes (i.e., all messages are generated). On
ClueWeb, GDRecoded takes only 4639 s to finish 5 super-
steps, much faster than GDBasic which takes 7920 s; how-
ever, this is brought about due to graph recoding which
takes 10956 s, which is still worthwhile if we need to run
PageRank for many computations till convergence. Also,
the computation time of ID Recoding is consistently less
than twice of the data loading time, and is thus an efficient
preprocessing.

Among the other systems, Pregelix is much slower than
GDBasic since it performs costly relational operations. X-
Stream is generally much slower than GraphChi as also
observed by [3]. HaLoop is sometimes slower than X-Stream
(e.g., onWebUK) even though it uses all machines.

Hash-Min. Table 2b reports the results of Hash-Min over
the two undirected graphs, where the number of supersteps
is what it takes to find all connected components. Similar to

TABLE 1
Graph Datasets

Data Type jVj jEj AVG Deg MAX Deg

Twitter

directed

52,579,682 1,963,263,821 37.34 779,958
WebUK 133,633,040 5,507,679,822 41.21 22,429
ClueWeb 978,408,098 42,574,107,469 43.51 7,447
Kron-32-16 232 67,971,861,142 15.83 14,454,242

Friendster
undirected

65,608,366 3,612,134,270 50.06 5,214
BTC 164,732,473 772,822,094 4.69 1,637,619

3. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
4. http://law.di.unimi.it/webdata/clueweb12
5. http://konect.uni-koblenz.de/networks/twitter_mpi
6. http://snap.stanford.edu/data/com-Friendster.html
7. http://km.aifb.kit.edu/projects/btc-2009/
8. https://github.com/graph500/graph500/tree/master/generator
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the PageRank experiments, GDBasic, GDRecoded and Pre-
gel+ exhibit similar performance since network bandwidth
is the bottleneck for them all, and Recoded even beats Pre-
gel+ over Friendster.

The computation workload of Hash-Min is typically as
follows: most vertices perform computation in the first few
supersteps, but as computation proceeds, less and less verti-
ces perform computation in a superstep, making the com-
putation workload very sparse. Sparse workload is not a
problem for in-memory systems since all adjacency lists are
memory-resident; meanwhile, GraphD is also able to avoid
accessing many useless adjacency lists with the help of its
streaming function skip(num_items) which we introduced in
Section 3.2. However, the other out-of-core systems do not
have effective support for sparse workload, and thus as
Table 2b show, their computation times are much longer
than GraphD and Pregel+.

SSSP. Table 2c reports the results of SSSP over two
directed graphs WebUK and Twitter, and two undirected
graphs BTC and Friendster. The number of supersteps
required are also shown. All edges were given weight 1, and
thus the computation is essentially breadth-first search (BFS).

Unlike PageRank and Hash-Min, the computation work-
load of every superstep for BFS (or more generally, SSSP) is
sparse. This is because in BFS, a vertex will only send mes-
sages to its neighbors when it is reached from the source
vertex for the first time. Since every vertex sends messages
along adjacent edges for only once during the whole period
of computation, the total workload is merely OðjEjÞ, which
amounts to the workload of just one superstep in PageRank
computation.

Table 2c shows that Pregel+ beats all the out-of-core sys-
tems on Twitter, which is not surprising since Pregel+ keeps
all adjacency lists in memory. GraphD is also comparable,
thanks to the use of streaming function skip(num_items).

Surprisingly, on BTC and WebUK, GDBasic even outper-
forms GDRecoded. This is because, if there are too few
messages to send in each superstep, the overhead of manip-
ulating the additional arrays (i.e., Ar and As mentioned in
Section 5) in recoded mode backfires. Note that all computa-
tions on BTC finished in seconds for both modes of GraphD,
whose workload is really low. While computations on
WebUK took a longer time, this is mainly because of the
large number of supersteps (i.e., 665). After all, IO-Recode
needs to create, update and tear down those large addi-
tional arrays for 665 times.

Also surprisingly, on WebUK, Pregelix is over two orders
of magnitude slower than GraphD. We found that Pregelix

incurs a fixed cost of at least 35 seconds for each superstep,
while a superstep of GDBasic can be as low as 0.02–
0.03 seconds.

Table 2c also shows that X-Stream is impractical for jobs
that run many iterations of sparse-workload vertex compu-
tation, since it needs to stream all edges in each iteration.
For example, X-Stream could not finish on WebUK after a
whole day. In fact, the authors of X-Stream themselves
admitted this problem at the end of Section 5.3 in [21].

Finally, graph loading in ID Recoding is faster than
GDBasic. This is because during ID Recoding, SE does not
include edge weights. We only attach edge weights when
we append recoded adjacency list items to SE

rec.

6.3 Performance on a Cluster of High-End Servers

From now on, we evaluate the scalability of various systems
on a more scalable cluster of 15 high-end servers, each with
twelve 2.0 GHz cores (two Intel Xeon E5-2620 CPUs), 48 GB
RAM and a 200 GB disk. These servers are connected by
Cisco C2960 switch which we observe to better utilize the
network bandwidth than the unmanaged switch in our PC
cluster. To better utilize the multi-core processors, we ran 8
GraphD processes on on each machine. Running more pro-
cesses does not help since the network and disk bandwidths
are already saturated.

The cluster additionally has access to a 2 TB disk, allow-
ing us to run single-machine systems over big graphs like
ClueWeb and Kron-32-16, whose size exceeds the disk capac-
ity of each server (e.g., the input file of ClueWeb has size
exceeds 400 GB).

In addition to Pregel+, we also include Giraph as a refer-
ence in-memory system. Although Giraph loads data, we
only report the total time since Giraph reports times labeled
“Initialize”, “Input Superstep”, “Setup”, etc., in addition to
the time for running each superstep. Also, we only run Gir-
aph in-memory mode, since we find that for graphs where
in-memory mode runs out of memory, out-of-core Giraph
still runs out of memory (also observed in [1]).

Table 3 reports the running time of various systems. Our
observations are similar to those from Table 2, with some
differences.

First, the performance improvement of GDRecoded over
GDBasic is much more significant than in the PC cluster.
For example, while GDRecoded only reduces the time of
PageRank computation over ClueWeb from 7920 s (of GDBa-
sic) to 4639 s (less than 2x) in Table 2, it reduces the time
from 7422 s to 1003 s (over 7x) in Table 3. This make ID
recoding more favorable if PageRank computation is going

TABLE 2
Performance on the PC Cluster (Time Unit: Seconds; ?: Smallest Computation Time Among All Systems)
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to run for many iterations. The much better performance
of GDRecoded is contributed by its elimination of EM
merge-sort, whose cost cannot be fully hidden since the net-
work bandwidth is better utilized now.

Also, by comparing Tables 2 and 3, we can see that com-
putation on the server cluster is also much faster than on
the PC cluster, thanks to the better network bandwidth utili-
zation of the server cluster.

Among the totally 10 experiments shown in Table 3,
Pregel+ beats GraphD in 6 of them. This is because Graph-
D’s parallel execution framework is not able to fully hide
the disk streaming overhead when network bandwidth
utilization is high. However, GDRecoded still wins 4
experiments, and is close to Pregel+ in performance for the
other experiments, which demonstrates the effectiveness
of our parallel execution framework and ID recoding tech-
nique. Note that GDRecoded also wins 5 out of the 9
experiments in Table 2.

6.4 Scalability to the Number of Machines

While distributed computation allows each machine to only
process a portion of the whole graph, this comes at the
cost of network communication, which can form the perfor-
mance bottleneck. The communication cost actually incre-
ases with the number of machines, since each machine has
jWj message streams and thus the total number of message
streams is jWj2, and the transmission of these streams con-
tend for sender-side and receiver-side network bandwidth.
When more machines than necessary is used, the increased
communication cost may outweigth the benefit brought
by workload dividing. This is also the reason why GraphD
targets a small cluster.

We now demonstrate that GraphD scales out in a small
cluster, by running PageRank computation overWebUK,Clue-
Web and Twitter in our server cluster, with 3, 6, 9, 12, 15

machines, respectively, where eachmachine runs 8 processes.
The performance results are reported in Fig. 5. We can see
that the performance of both GDBasic and GDRecoded
improves as the number of machines increases, but the trend
slows down as the number ofmachines become larger. In fact,
Fig. 5c shows that GDBasic performs the bestwhen there are 9
machines, and the performance becomes poorer if we further
increase machine number. This is because Twitter is relatively
small, andwith 9machines, GDBasic already allows each pro-
cess to process an affordable workload, but the increased
communication cost begins to backfire.

In general, GDRecoded is much faster than GDBasic, and
WebUK and ClueWeb are big enough so that increasing
machine number all the way to 15 still keeps improving the
performance of GDBasic and GDRecoded (as workload
dividing is still very effective).

6.5 Cost of Communication versus Computation

We now demonstrate that network communication is the
performance bottleneck of GraphD in both our PC cluster
and our server cluster, by considering PageRank computa-
tion overWebUK, ClueWeb and Twitter.

Recall that in each superstep, vertex-centric computation
generates messages (by Uc), which get sent in parallel by Us.

Table 4 shows the time taken by both GDBasic and
GDRecoded to transmit messages (Column “M-Send”), and
the time to generate messages (Column “M-Gene”). Since
the behavior of Uc and Us of different processes may vary
due to imbalanced workload distribution (e.g., caused by
vertex degree difference), we only report the time for the
first process. All reported times are summed over all the 10
(or 5) supersteps, and “M-Gene” only sums the portion of
time for vertex-centric computation.

We can see from Table 4 that in all the 6 data-cluster com-
binations, message transmission happens during the whole

TABLE 3
Performance on the High-End Cluster (Time Unit: Seconds; ?: Smallest Computation Time Among All Systems)

Fig. 5. Scalability results to number of machines.
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period of each superstep, but Uc only computes in the early
stage (often much less than half) of each superstep. This
demonstrates that network bandwidth is really the perfor-
mance bottleneck.

6.6 Workload Distribution

Recall from Section 3.2 that GraphD (normal mode) distrib-
utes vertices to processes using vertex ID hashing, which is
exactly like in Pregel. However, vertex-based partitioning
does not take vertex degree difference into consideration.
For example, in Table 1, the average degree of Twitter (resp.
WebUK) is 37.34 (resp. 41.21), but the maximum vertex
degree is 779,958 (resp. 22,429). A high-degree vertex adds
much more workload to its assigned process than an aver-
age vertex, and thus, we would like to check whether the
workload of every processes are still reasonably balanced.

For both WebUK and Twitter (with uneven vertex degree
distribution), we ran 5 supersteps of PageRank computation
over GDBasic and GDRecoded (15 machines 	 8 processes/
machine), and count the average number of messages sent
by each process in a superstep as shown in Fig. 6, and the

average time spent by each process in computing a super-
step as shown in Fig. 7.

Fig. 7 shows that although the computation time varies a
bit among the workers due to the dynamics of computation
and communication, the distribution is still relatively bal-
anced. Fig. 6 shows that message workload distribution is
highly balanced for both GDBasic and GDRecoded. This is
because the large quantity of vertices on each process is able
to average out the variance caused by the high-degree verti-
ces assigned to this process. However, if one is willing to
partitioning a big graph (which is often costly), it is straight-
forward to apply the two methods mentioned in [29] to
GraphD: (i) partition-based ID recoding, or (ii) expanding
vertex ID with process ID.

The most popular partitioning algorithm is Metis [9], as
adopted by Mizan [10] and Giraph++ [26], which minimizes
cross-partition edges (and hence minimize communication)
in addition to balancing workloads. Integrating graph parti-
tioning into GraphD may further improve its load balancing
and the ultimate performance. GPS [22] and Mizan [10] fur-
ther support dynamic vertex migration during computation
to balance workloads, but the effectiveness may be limited
as Section 3.4 of [28] reveals.

6.7 Comparison with Chaos

While Chaos [20] is also a distributed out-of-core graph
engine, we have not included it in our comparison as it is
designed to run with high-speed network, and [20] admits
that the performance is undesirable with Gigabit Ethernet
as we shall demonstrate here.

Unlike other distributed systems, Chaos does not sup-
port parallel data loading from HDFS. A graph needs to be
converted into the binary format required by Chaos, and be

TABLE 4
Time of Message Generation versus Message Transmission

WebUK
(10 steps)

ClueWeb
(5 steps)

Twitter
(10 steps)

M-Send M-Gene M-Send M-Gene M-Send M-Gene

PC
Cluster

GDBasic 1189 s 274.2 s 7920 s 4853 s 458.2 s 61.9 s
GDRecoded 982.3 s 242.1 s 4639 s 2605 s 434.6 s 45.0 s

Server
Cluster

GDBasic 1093 s 91.2 s 7422 s 2954 s 424.6 s 32.8 s
GDRecoded 331.6 s 101.3 s 1003 s 613 s 121.2 s 35.7 s

Fig. 6. Number of messages sent by each process in each superstep, averaged over five supersteps of PageRank computation.

Fig. 7. Average computation time spent by each process in each superstep, averaged over five supersteps of PageRank computation.
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distributed to machines before the actual computation.
Without counting the preprocessing cost, Chaos is still
much more expensive for graph computation than the other
distributed systems we compared, mainly because it is
designed only to run with a high-speed network. To demon-
strate it, we run Chaos9 in our server cluster to repeat our
experiments. Table 5 shows the execution time of the dis-
tributed Pregel-like systems along with Chaos (at the last
column). The execution time of Chaos reported in Table 5
does not include that for preprocessing, and we are not able
to report results for the big datasets ClueWeb and Kron-32-
16, since they cannot be preprocessed due to insufficient
disk space. We can see from Table 5 that Chaos is signifi-
cantly more expensive than the other distributed systems,
which verifies that Chaos is not a good choice if high speed
network is not available.

6.8 Space Costs
Besides execution time, space usage is also an important
metric of system scalability. Table 6 shows the peak usage
of memory space and disk space, summed over all
machines, when running PageRank computation over Twit-
ter. We can see that GraphChi uses the least memory space,
followed by our GraphD jobs, and then X-Stream. Pregelix
executes with a dataflow engine that fully utilizes the avail-
able memory to reduce external-memory cost. Interestingly,
Pregelix and HaLoop use even more aggregate memory
space than in-memory systems Pregel+ and Giraph, possi-
bly due to the space-consuming auxiliary structures for
communication and for B-tree based vertex storage. Finally,
we can see that on-disk data organization is much less com-
pact in Chaos than in the other systems (over 10x w.r.t.
GraphD), which explains why Chaos has poor performance
in Table 5, i.e., the data request model of Chaos requires
transmitting the huge amount of incompact data, which is
very slow with Gigabit Ethernet.

6.9 Performance for Machine Learning

Pregel-like systems can also be used for machine learning
algorithms that perform iterative computation, such as
k-means clustering [19] and gradient descent. We imple-
mented k-means clustering in GraphD to explore its perfor-
mance and scalability. In this program, each vertex (i.e.,
data point) v maintains a value indicating which of the k
centers is closet to v, while each coordinate of v is treated as
an edge so that coordinates are streamed from SE during
computation. In a superstep, a vertex recomputes its closet

center from the k centers aggregated from the last super-
step, and then aggregates its coordinates to its new center in
the aggregator which then computes new centers for the
next superstep. The algorithm was implemented in normal
mode, since vertices need not send messages and thus
recoded mode does not help. We generated synthetic
k-dimensional points using k Gaussian distributions with
standard deviation 0.5, where the ith Gaussian distribution
is centered at the point whose ith coordinate is 1 and whose
other coordinates are 0. Points were generated from the
Gaussian distributions in a round-robin manner, and the
experiments were run on our high-end cluster.

The performance on GraphD is very good. For example,
when there are 0.1 billion points of 5 (resp. 6) dimensions,
each superstep takes 0.17s (resp. 0.19s); when there are 1 bil-
lion points of 5 (resp. 6) dimensions, each superstep takes
0.84s (resp. 1.15 s).

6.10 Comparison with FlashGraph

We also tested the state-of-the-art single-machine SSD-
based system FlashGraph, with a standalone server with
8 GB RAM and a 128 GB SSD (Samsung PM851 Series). We
report the results of PageRank computation over Twitter.

After putting Twitter to FlashGraph’s SAFS (a file system
for SSD), the space used is 31.06 GB, comparable to GraphD
as shown in Table 6. FlashGraph runs an asynchronous Pag-
eRank algorithm where only unconverged vertices perform
computation, and thus the time of an iteration becomes
shorter and shorter. It took 2763 s and 31 iterations to finish
PageRank computation on Twitter but the first 10 iterations
are all over 120 s (the first one takes 165 s). In contrast,
Table 2 shows that GraphD used less than 500 s to finish 10
supersteps of PageRank computation on Twitter.

However, we remark that FlashGraph is a promising
solution when an array of SSDs are available, since it uses
only one machine and can work with multiple SSDs (while
the server used in this experiment has only one SSD).

7 CONCLUSION

We presented a Pregel-like system, called GraphD, for effi-
cient out-of-core processing of very large graphs with aver-
age computing resources that are readily available to most
users. To process a graph G ¼ ðV;EÞ with n machines using
GraphD, we proved that each machine only requires
OðjV j=nÞ memory space. GraphD is also carefully designed
to support sparse computation workload efficiently, to

TABLE 5
Performance of Distributed Systems (Comparison with Chaos)

Dataset Pregel+ GDBasic GDRecoded Pregelix Chaos

PageRank
WebUK 305.2 s 1235 s 335.5 s 1888 s 23651 s
Twitter 164.2 s 469.3 s 123.9 s 936.8 s 4701 s

HashMin
BTC 39.3 s 89.6 s 36.9 s 605.8 s 11714 s

Friendster 152.0 s 272.5 s 97.4 s 1332 s 17762 s

SSSP

BTC 26.9 s 36.4 s 11.6 s 372.6 s 3525 s
Friendster 111.3 s 253.3 s 68.4 s 705.6 s 13509 s
WebUK 177.1 s 419.0 s 256.3 s 3773 s > 24 hr
Twitter 59.1 s 123.9 s 27.6 s 581.6 s 3672 s

TABLE 6
Space Cost of PageRank Computation over Twitter

Memory Disk

GDBasic 38.6 GB 32.3 GB
ID Recoding 37.9 GB 31.3 GB
GDRecoded 32.9 GB 36.1 GB
Pregel+ 109.4 GB �
Giraph 264.2 GB �
Pregelix 315.5 GB 66.7 GB
HaLoop 305.2 GB 96.9 GB
GraphChi 11.7 GB 48.1 GB
X-Stream 40.1 GB 29.9 GB
Chaos 114.3 GB 448.2 GB

9. https://github.com/epfl-labos/chaos
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parallelize computation with communication, and to elimi-
nate the need of any expensive external-memory operation
by ID recoding. Open-source implementation of GraphD is
provided, and extensive experiments demonstrated that
GraphD’s performance is competitive even when it is com-
pared with an in-memory Pregel-like system.

While GraphD achieves impressive performance on a
commodity cluster with a low bandwidth network, we
remark that GraphD can be inferior to the state-of-the-art
systems in other settings. For example, when the cluster
memory is not a concern and network bandwidth is large
enough, distributed in-memory systems such as GraM [27]
can outperform GraphD as GraphD’s design does not take
advantage of the sufficiency in memory and network band-
width to boost its performance. GraphD’s performance can
also be inferior to single-machine systems such as Ligra [24],
Galois [17], and FlashGraph [32], which achieve superb per-
formance with a many-core machine with big RAM (e.g.,
1TB) or big flash memory. More detailed discussion on the
different types of existing systems is given in Section 2.
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