
Large Scale Graph Mining with G-Miner
Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang, Yifan Hou,

Changji Li, James Cheng
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{hzchen,xxwang,chhuang,jcfang6,yfhou,cjli,jcheng}@cse.cuhk.edu.hk

ABSTRACT
This Demo presents G-Miner, a distributed system for graph
mining. The take-aways for Demo attendees are: (1) a good
understanding of the challenges of various graph mining
workloads; (2) useful insights on how to design a good system
for graph mining by comparing G-Miner with existing sys-
tems on performance, expressiveness and user-friendliness;
and (3) how to use G-Miner for interactive graph analytics.
ACM Reference Format:
Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang,
Yifan Hou, Changji Li, James Cheng. 2019. Large Scale Graph Min-
ing with G-Miner. In 2019 International Conference on Management
of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3299869.
3320219

1 INTRODUCTION
In recent years, many graph processing systems have been
proposed [7]. However, the majority of these systems follow
Pregel [2]’s vertex-centric programming framework, which
can easily implement a parallel version of algorithms such as
PageRank, connected components, and breadth-first search.
The common characteristic of these algorithms is that the
computation and communication on each vertex are usually
light (mostly of linear complexity) in each iteration.

The vertex-centric framework and its respective systems,
however, are not suitable for processing graph mining jobs
such as community detection, subgraph mining, graph clus-
tering, graphlet counting/listing, graph matching, to name
but a few. Graph mining jobs are generally computation-
intensive and/or memory-intensive. Due to the well-known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320219

combinatorial explosion problem in the generation of (can-
didate) subgraphs, the computation and memory overheads
in graph mining often grow quickly (at least superlinearly
or even exponentially in the worst case). The much heavier
workload of graph mining jobs also renders distributed com-
puting a good option for large-scale graph mining; in con-
trast, McSherry et al. showed that distributed vertex-centric
systems have a high COST [3], i.e., the cost needed to out-
perform a single-threaded implementation is high. Besides
the much higher computational complexity, graph mining
algorithms are also generally more difficult to implement.

General programming frameworks and systems for large-
scale graph mining have been lacking. In our prior work [1],
we analyzed the limitations of existing graph mining systems
(e.g., NScale [4], Arabesque [5], G-thinker [6]) and proposed
a new distributed system, called G-Miner. G-Miner follows
a new graph-centric programming paradigm, in which com-
putation is applied directly on each of the subgraphs that
may potentially produce a result of the mining job. Based
on this graph-centric paradigm, we develop a task-oriented
computation framework, which encapsulates the process-
ing of a graph mining job as a stream of independent tasks
and streamlines task processing with a novel task-pipeline
design. The new system design removes synchronization
barrier in existing systems and allows various resources (i.e.,
CPU, network, disk) to be used concurrently. As a result,
the communication and disk I/O costs are hidden inside the
higher CPU cost of computation-intensive graph mining jobs,
while we address thememory-intensive problem by buffering
tasks on disk as tasks are independent of each other. We
showed that G-Miner has a low COST [1].
This Demo plans to show the efficiency of G-Miner for

processing various graph mining applications and how G-
Miner addresses the limitations of existing systems with
its new design. We will visualize the details of G-Miner’s
internal processing and how various system components
work together to resolve typical bottlenecks of distributed
graph mining, thereby providing Demo attendees a good
understanding of where the challenges of distributed graph
mining lie and good insights of how to design and implement
an efficient distributed system for general graph mining. Our
Demo system will also provide a graphical interface to allow

https://doi.org/10.1145/3299869.3320219
https://doi.org/10.1145/3299869.3320219
https://doi.org/10.1145/3299869.3320219

graph loader

task generator

aggregator

HDFS

vertex table

partitioner

request listener

task results

progress collectorprogress reporter

progress
scheduler

Worker i

context
task pipeline

tasks

tasks

partitioner

aggregator

Master

Figure 1: System Architecture

users to interact with G-Miner, so as to help them understand
the mining results and conduct further analysis recursively.

2 THE G-MINER SYSTEM
We briefly describe basic concepts and design of G-Miner
and its key components. Details can be found in the G-Miner
paper [1] and code (https://github.com/yaobaiwei/GMiner).

2.1 What G-Miner Supports and Its API
G-Miner provides a unified programming framework for im-
plementing distributed algorithms for a wide range of graph
mining applications including (1) subgraph/graphlet enumer-
ation (e.g., triangles, cliques, size-k graphlets); (2) subgraph
matching (i.e., listing all occurrences of a set of query sub-
graphs); (3) subgraph finding (e.g., maximum clique finding,
densest subgraph finding, etc.); (4) subgraph mining (e.g., fre-
quent graphmining, community detection, correlated subgraph
mining, etc.); (5) graph clustering.

The classic algorithms for solving these mining problems
generally follow the pattern that starts from some initial
subgraphs (e.g., seed vertices) and then recursively performs
an update operation (e.g., grow, prune, split, output) on each
intermediate subgraph. G-Miner offers a succinct API that
only requires users to implement an init() and update() func-
tion for the specific graph mining task. Details and examples
can be found in [1] and will be shown in the Demo.

2.2 Core Concepts
Task Model. We model a graph mining job as a stream of
independent tasks, where a task is processed in rounds and
new tasks may be generated and added to the stream in
runtime. A task consists of three fields: (1) a subgraph д to
keep the topology of an intermediate subgraph from which
a mining result may be obtained; (2) candidates to record
the IDs of д’s 1-hop neighbors that will be used to update
д in the next round; (3) context to hold meta-data, e.g., the
current round number, the count of matched patterns.

19 20 … … … … … … … … …
PQ

CPQ

CMQ

17 16 15 14 13

3 2 1

commun thread

5

computing threads

vid ref

… …

… …

v8 2

v9 1

v10 1

… …

Request:

v9, v10

Insert

Insert

Update

4

RCV Cache

Response

Task Store

Memory Disk

Candidate Retriever

candidates

v8, v9, v10

18

6 7 8 9 10 11

12

RCV

Cache

Task Buffer

Task Executor

Figure 2: Task-Pipeline

Task Lifetime. A task may have the following four statuses.
(1) active: being processed by CPU; (2) inactive: remote ver-
tices in candidates to be pulled through network; (3) ready:
ready to be processed; (4) dead: task completed or pruned.
Task Asynchronism. If a task has no remote vertex re-
quired in the current round, it directly continues to the next
round without status change. Task processing in G-Miner
has no synchronization barrier.

2.3 System Architecture and Components
G-Miner adopts a master-slave shared-nothing architecture,
as shown in Figure 1. One node in the cluster serves as
the master and others are workers. Each workerWi loads a
piece of graph data Pi from HDFS by the graph loader. The
partitioner in the master communicates with the partitioner
in each worker to re-distribute the graph data based on a
specific partitioning algorithm.

When amining job starts, the task generator in eachworker
will scan the local vertex table to select the seed vertices and
then generate one task for each seed. These tasks are fed into
the task-pipeline to be executed. An aggregator may be used
to access the context of each task at the end of each round
for global communication and monitoring. Each worker also
has a request listener to handle requests for vertex pulling or
tasks stealing from other workers. To implement task steal-
ing, each worker has a progress reporter that sends its local
progress to the master periodically, while the master uses
a progress collector to receive the reports for maintaining a
global view of the workers’ progresses, which is used by the
progress scheduler to facilitate dynamic migration of tasks
from busy workers to idle workers.
Task-Pipeline. Lying at the core of G-Miner is the task-
pipeline, which is designed to use CPU, network and disk
concurrently in order to achieve good resource utilization:
(1) CPU computation for the main mining procedure, (2) net-
work communication to pull candidates from remote ma-
chines, and (3) disk writes/reads to buffer intermediate tasks
on local disk. This is done by the three main components

in the task-pipeline: task store, candidate retriever and task
executor, as illustrated in Figure 2.
The task store manages all inactive tasks on local disk.

Considering different tasks may request the same candidate
vertices from remote workers, we apply caching to avoid
repeated vertex pulling. To improve the cache hit ratio, we
propose a locality-sensitive task priority queue (PQ) to order
tasks by keeping those with common remote candidates near
each other. The candidate retriever prepares the remote
vertices in a task’s candidates, by getting it from the RCV
Cache (which uses a replacement strategy based on the Ref-
erence Counts of the cached Vertices) or pulling via network.
When a task has issued its pull requests, it is moved into the
communication queue (CMQ) waiting for the pull responses.
Once all remote candidates are obtained, a task changes its
status to ready and is then inserted into the computation
queue (CPQ) managed by the task executor, which consists
of a pool of computing threads to process tasks in parallel. If
a task becomes inactive, it is placed into a task buffer to be
moved to the task store in batches.

3 DEMONSTRATION PLANS
Objectives. The objectives of this demo are to show SIG-
MOD attendees: (1) the superior efficiency and scalability of
G-Miner, as well as its expressiveness, compared with two
state-of-the-art graph mining systems, Arabesque [5] and G-
thinker [6], and two popular vertex-centric systems, Giraph
and GraphX, on various categories of graph mining algo-
rithms; (2) real-time display of G-Miner’s runtime system
status and resource utilization, in order to demonstrate how
various components of G-Miner interact with each other to
achieve superior performance and address the bottlenecks
of existing systems; and (3) an intuitive visualization of the
in-process mining results and an interface for interaction
with G-Miner to help users understand the mining results.
Set-up. The back-end engine of G-Miner will be deployed
and run on cloud or a remote cluster (e.g., the cluster used
for the experimental evaluation of G-Miner in [1]). The front-
end interface of G-Miner will be run on a laptop and support
user interaction with Demo attendees. We plan to use the
six real-world graph datasets in [1].

3.1 System Comparison
This part of the Demo justifies why G-Miner is preferred
over the state-of-the-art graph mining systems and other
popular graph processing systems regarding to its perfor-
mance. In addition, for a system to be useful, one should also
show that it is expressive and easy to use. To this end, we
will show Demo attendees G-Miner’s user-friendly API, and
how succinctly and intuitively we can implement various
categories of applications, including typical graph mining

117.4
72.4

168.2

29.1

10.7

693.4

2191.6

343.5

83.5 73.6

15129.3

136.2

34.4

189.2
97.3

1

10

100

1000

10000

100000

Arabesque Giraph GraphX G-thinker G-Miner Arabesque Giraph GraphX G-thinker G-Miner

R
u
n

ti
m

e
(s

)
in

 l
o

g
 s

ca
le

TC MCF

Skitter Orkut

--x-- --x

Figure 3: Performance results of TC and MCF (“-”: >24
hours; “x”: job failed due to OOM)

algorithms such as Triangle Counting (TC),Maximum Clique
Finding (MCF), Graph Matching (GM), Community Detection
(CD), and Graph Clustering (GC). Meanwhile, we will also
explain the difficulties in using the APIs of existing systems
to implement these algorithms, through this process Demo
attendees will also see why graph mining workloads are gen-
erally much heavier than typical workloads of vertex-centric
systems (as we have also discussed in Section 1).
The above algorithms are listed in ascending order of

their computational complexity. We will show the perfor-
mance benefits G-Miner has over existing systems by show-
ing how their performance bottlenecks are addressed by
G-Miner’s new system design. In particular, for algorithms
with higher complexity, G-Miner’s performance advantages
become more obvious. For example, Figure 3 shows that G-
Miner is significantly faster than some other systemswe com-
pared in [1] for processing TC and MCF on the two datasets
Skitter and Orkut, and the performance gap widens consid-
erably for the heavier MCF workload. While more detailed
performance comparison results were reported in [1], this
Demo aims to explain (with visualized details) why other sys-
tems are inefficient in processing graph mining workloads,
by comparing their design with that of G-Miner.

3.2 The Anatomy of G-Miner
In this part of the Demo, we will show a detailed view of
where the superior performance of G-Miner comes from, by
showing its key design idea and how various system com-
ponents work together. The take-aways for Demo attendees
are a good understanding of the difficulties in processing
large-scale graph mining workloads and insights on how to
build an efficient and scalable graph mining system.

To this end, we implemented a runtime information moni-
tor (RIM) for G-Miner, which allows Demo attendees to con-
figure and interact with G-Miner. Attendees may manually
configure system parameters (e.g., cache size, thread-pool
size, the sizes of various queues) for various components
through RIM’s control panel, so that they can easily observe
the performance benefits brought by various system com-
ponents and optimization techniques, and their respective

Visualization Console

Application Info

Output Visualization

5

4

4

{1, 15}

Figure 4: A screenshot of G-Miner’s RIM interface (best viewed in color)

trade-offs (if any). RIM will also display a detailed view of
G-Miner’s runtime info (e.g., job progress, in-process results,
resource utilization), in real time (a snapshot at current time
is depicted in Figure 4). RIM also has a runtime display panel
to illustrate how various components (e.g., task store, candi-
date retriever, task executor) in G-Miner interact with each
other and how tasks of different statuses flow in the task-
pipeline. In particular, the panel shows the number of specific
tasks being processing and queued in each component of the
task-pipeline, as well as the task flow rate between any two
connecting components, to help attendees better understand
the mining procedure of G-Miner and the combinatorial
explosive nature of graph mining applications. The utiliza-
tion of various resources (e.g., CPU, memory, network, disk)
by G-Miner will show attendees how CPU-intensive and
memory-intensive a graph mining job is, and how G-Miner
hides the network cost and disk I/O inside the CPU cost.

In addition, the display panel also visualizes the in-process
result of the current ongoing graph mining job, e.g., for MCF
(or GM), we can show the currently found maximum clique
(or matched patterns), including its size and topology.

3.3 Interactive Graph Mining w/ G-Miner
TheDemo system also supports interactive graphmining. For
example, for GC, users may remove any vertex from, and/or
add/remove any edge to/from, a found cluster through our
GUI, and then observe visually how the cluster changes,
which is useful to understand the importance of certain ver-
tices and their connection to others. Other detailed infor-
mation will also be presented, including metrics that mea-
sure the quality of clusters (e.g., Conductance, Coverage), as

shown in Figure 4. Similar interactions may also apply to
other mining applications, e.g., CD and MCF. For GM, we
also allow users to interactively find matching patterns and
their locations in the graph, zoom in and out to explore their
neighborhoods. For graphlet counting/listing, in addition to
all the statistics about the counts of various graphlets, we
can also display their visual occurrences in the graph, how
they connect to and overlap with each other.
Acknowledgments. We thank the reviewers for their valu-
able comments. This work was supported in part by ITF
6904945 from the Government of the Hong Kong, and GRF
14208318 & 14222816 from the Hong Kong RGC.

REFERENCES
[1] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James

Cheng. 2018. G-Miner: an efficient task-oriented graph mining system.
In Proceedings of the Thirteenth EuroSys Conference. ACM, 32.

[2] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system
for large-scale graph processing. In SIGMOD. ACM, 135–146.

[3] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scala-
bility! But at what COST?. In HotOS.

[4] Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale:
neighborhood-centric large-scale graph analytics in the cloud. The
VLDB Journal 25, 2 (2016), 125–150.

[5] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a
system for distributed graph mining. In SOSP. ACM, 425–440.

[6] Da Yan, Hongzhi Chen, James Cheng, M Tamer Özsu, Qizhen Zhang,
and John Lui. 2017. G-thinker: big graph mining made easier and faster.
arXiv preprint arXiv:1709.03110 (2017).

[7] Da Yan, Yuanyuan Tian, and James Cheng. 2017. Systems for Big Graph
Analytics. Springer.

	Abstract
	1 Introduction
	2 The G-Miner System
	2.1 What G-Miner Supports and Its API
	2.2 Core Concepts
	2.3 System Architecture and Components

	3 Demonstration Plans
	3.1 System Comparison
	3.2 The Anatomy of G-Miner
	3.3 Interactive Graph Mining w/ G-Miner

	References

