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ABSTRACT
Pregel-like systems are popular for iterative graph processing thanks
to their user-friendly vertex-centric programming model. However,
existing Pregel-like systems only adopt a naïve checkpointing ap-
proach for fault tolerance, which saves a large amount of data about
the state of computation and signi�cantly degrades the failure-free
execution performance. Advanced fault tolerance/recovery tech-
niques are left unexplored in the context of Pregel-like systems. This
paper proposes a non-invasive lightweight checkpointing (LWCP)
scheme which minimizes the data saved to each checkpoint, and
additional data required for recovery are generated online from the
saved data. This improvement results in 10x speedup in checkpoint-
ing, and an integration of it with a recently proposed log-based
recovery approach can further speed up recovery when failure
occurs. Extensive experiments veri�ed that our proposed LWCP
techniques are able to signi�cantly improve the performance of
both checkpointing and recovery in a Pregel-like system.

1 INTRODUCTION
Google’s Pregel [5] pioneered a think-like-a-vertex programming
model intuitive for writing distributed programs for iterative graph
computations (e.g., random walks and graph traversals), where ver-
tices communicate by message passing. This vertex-centric model
has been followed by many systems such as Giraph [2], GraphX [4]
and Pregel+ [11], and are generally called Pregel-like systems.

As a distributed framework, Google’s Pregel [5] supports fault
tolerance to combat machine failures: a checkpointing-based ap-
proach which periodically saves the current state of computation to
a failure-resilient storage (which survives machine failures), so that
the latest saved state can be loaded in case failure happens to avoid
re-computation from scratch. We assume Hadoop Distributed File
System (HDFS) is used as the failure-resilient storage hereafter.

However, a checkpoint in Pregel contains all vertex states, edges,
and messages sent by vertices in an iteration, and writing them to
HDFS hurts the failure-free performance and is often disabled [5].

Faster fault tolerance techniques such as incremental checkpoint-
ing and log-based methods have been proposed [3], but surprisingly,
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their adoption in Pregel-like systems remains unexplored. This
is likely because vertex-centric model is very general, and there
are always some applications where only naïve checkpointing is
applicable. As Sec. 2 shall discuss, more e�cient fault tolerance
techniques have been applied to only to more restricted models
than Pregel, other than [10] which explored the use of message logs
to speed up failure recovery; but we �nd that [10] ignores the need
and cost of garbage collecting outdated message logs, and when
counting that cost, the failure-free execution time is increased.

In this paper, we study advanced fault tolerance techniques for
Pregel-like systems, and our contributions are as follows:

• We apply faster fault tolerance techniques to a Pregel-like
system while keeping the impact to users’ programming
minimal, which no change or at most some minor changes
needed depending on speci�c applications, for which previ-
ously the only choice is expensive naïve checkpointing.

• A lightweight checkpointing (LWCP) scheme is proposed
to signi�cantly reduces the data volume to be saved in a
checkpoint, which reduces checkpointing time by 10x.

• Built on LWCP, a vertex-state log based approach is proposed
for faster failure recovery. This approach is also the �rst to
truly support faster failure-free execution by avoiding the
high cost of deleting outdated message logs which would
otherwise be required using [10]’s message logging scheme.

• We implement all methods under a uni�ed framework built
with ULFM [1] which enjoys MPI’s e�ciency and portability.

The rest of this paper is organized as follows. We review the
related work on fault tolerance in Sec. 2, and review Pregel and
our abstraction of its work�ow in Sec. 3. Then, Sec. 4 introduces
our LWCP solution that signi�cantly reduces the checkpointing
time, and Sec. 5 describes our vertex-state log based approach that
supports faster recovery. Finally, experimental results are reported
in Sec. 6 and the paper is concluded in Sec. 7.

2 RELATED WORK
Studies of fault tolerance in distributed message-passing systems
date back to the 80s–90s, and [3] surveys these techniques such as
coordinated checkpointing and incremental checkpointing. Almost
all existing Pregel-like systems adopt coordinated checkpointing
which writes a checkpoint after a synchronization barrier at the
end of an iteration, leaving other techniques unexplored.

The other technique, incremental checkpointing, avoids rewrit-
ing portions of states that do not change between consecutive
checkpoints, but has not been considered in Pregel-like systems.

However, fault-tolerance protocols surveyed in [3] are mainly de-
signed for a general message-passing system rather than a concrete
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Figure 1: Vertex State & “Compute” Function
computation model like Pregel. The general-purpose protocols incur
additional overheads like piggybacked information and dependency
tracking, and their non-invasive integration with the vertex-centric
programming model of Pregel remains an open problem.

In the context of a general Pregel-like model, [10] proposes
a message logging method which is able to reduce the amount
of communication during recovery. However, the work ignores
the cost of deleting outdated message logs (which is needed to
avoid using up disk space), and failure-free execution hurts when
considering that cost. This weakness outweighs the bene�t of faster
failure recovery since machine failure does not occur frequently.

3 A FAULT-RESILIENT PREGEL WORKFLOW
This section �rst reviews Pregel’s model in Sec. 3.1, and then intro-
duces our fault-tolerant Pregel work�ow abstraction in Sec. 3.2.

3.1 Pregel Review
Notations. We consider an input graphG = (V ,E) stored on HDFS,
where each vertex� 2 V has a unique ID (also denoted as� for sim-
plicity) and an adjacency list �(�). IfG is undirected (resp. directed),
�(�) contains all�’s neighbors (resp. out-neighbors). In Pregel, each
vertex � also maintains (1) a value a(�) which gets updated during
computation, and (2) a boolean label on(�) indicating whether � is
active (“on”) or halted (“o�”). A Pregel program is run on a cluster
of worker machines (or simply workers), denoted byW.

Fig. 1 shows the contents of a vertex � , where we use super-
script (i) to indicate that a value is updated by Iteration i , or equiv-
alently, is at the beginning of Iteration (i + 1). We also de�ne the
state of a vertex � as a triplet � (�) = ha(�), �(�),on(�)i.
Pregel. A Pregel program starts by loading a graph from HDFS,
where each vertex � is distributed to a workerWi 2 W (along with
�(�)) according to a partitioning function hash(.), i.e., i = hash(�).
We de�ne VW as the set of all vertices assigned to workerW .

To write a Pregel program, one needs to specify the behavior of
a vertex � in a user-de�ned function (UDF) compute(msgs), where
msgs is the set of messages received by � (sent in the previous
iteration). In� .compute(.),� may update its value a(�) and neighbor
list �(�), generate and send new messages to other vertices, and
vote to halt (i.e., set on(�) as false). Only active vertices will call
compute(.) in an iteration, but a halted vertex will be reactivated if
it receives a message. The program terminates when all vertices
are halted and there is no pending message for the next iteration.

Let us de�ne M(i)
in (�) as the set of messages received by � when

Iteration i begins, and M
(i)
out (�) as the set of messages generated

and sent by � in Iteration i . As Fig. 1 shows, UDF � .compute(msg)
essentially de�nes a function f below (recall that � denotes �’s ID):

�
(i)(�), M(i)

out (�)  f (�, � (i�1)(�), M(i)
in (�)), (1)

We explain how to write UDF compute(.) using two examples.
Example 1: PageRanks. Given a directed web graph G = (V ,E),
where each vertex (page) � links to a list of pages �(�), the �rst
problem computes the PageRank of every vertex � 2 V , stored in
a(�). In � .compute(.), if the current iteration is Iteration 1, � ini-
tializes a(�) 1/|V | and distributes the value a(�)/|�(�)| to each
out-neighbor in �(�). In Iteration i > 1, each vertex � sums up
the received values sent from its in-neighbors, denoted by sum,
and computes a(�)  0.15/|V | + 0.85 ⇥ sum. It then distributes
a(�)/|�(�)| to each out-neighbor. This process is repeated in itera-
tions until a(�) of every vertex � converges to its PageRank.
Example 2: Hash-Min. This algorithm computes connected com-
ponents (CCs) of an undirected graph. The idea is to let each vertex
� remember and broadcast the smallest vertex ID it has ever seen,
which is kept in a(�). When the process converges, for every vertex
� , a(�) is the smallest vertex ID in the CC that � locates in.

Consider � .compute(.). In Iteration 1, � initializes a(�) as id(�),
broadcasts it to its neighbors, and votes to halt (i.e., on(�) false).
In Iteration i > 1, � receives messages from its neighbors; letmin

be the smallest ID received, if min < a(�), � sets a(�) min and
broadcasts it to neighbors. All vertices vote to halt at the end of an
iteration. The job �nishes when no vertex receives a smaller ID.
Combiners. Users may implement a message combiner to specify
how to combine messages that are directed to the same vertex
u, so that on a workerW , outgoing messages targeting u will be
combined into a single message and then sent by W to u. This
e�ectively reduces message number. For example, in PageRank
(resp. Hash-Min), the combiner logic can be taking the sum (resp.
minimum), as compute(.) only needs the sum (resp. minimum).
Aggregators. Pregel also supports an aggregator for global com-
munication. Each vertex can provide a value to an aggregator in
compute(.) in an iteration. The system aggregates those values and
makes the aggregated result available to all vertices in the next
iteration. In implementation, each worker �rst aggregates values
provided by its vertices locally, which are then globally aggregated.

3.2 Our Resilient Pregel Work�ow
We �rst abstract the key operations of a fault-resilient Pregel frame-
work, and explain how existing solutions �t in the framework.
The Three Key Operations. Our framework takes 3 operations
to specify when implementing a fault-resilient Pregel system:

• OP1: actions of a vertex during normal execution;
• OP2: when failure occurs, actions of a surviving vertex;
• OP3: when failure occurs, actions of a revived vertex.

In naïve checkpointing, (OP1) a vertex � receives all its incoming
messages and call UDF compute(.) to advance its state and to gener-
ate messages for the next iteration. When failure occurs, (OP2) a
vertex on a surviving machine loads everything about its state from
the latest checkpoint (let it be i), and then advances its computation.
Starting from Iteration (i + 1), the execution becomes normal like
in OP1. Finally, (OP3) for a vertex on a crashed machine, it will
be revived on another machine, after which it will load the latest
checkpoint and advance its computation exactly like in OP2.

Consider the example of PageRank computation, and assume
that a checkpoint is saved for every � = 10 iterations. If a machine
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crashes at Iteration 17, then the latest checkpoint saved at Itera-
tion 10 will be loaded to roll the state of every vertex back to the end
of Iteration 10, and the computation then reruns from Iteration 11.

However, since the state of a surviving vertex is already at Itera-
tion 17, re-computing from Iteration 11 wastes prior computation.
The message logging approach of [10] aims to avoid this waste. It
does not roll back the states of surviving vertices, and only revives
those vertices in crashed machine(s), and reruns their computation.

A gap remains here: (1) when a revived vertex � reruns its com-
putation, say, at Iteration 12,� needs to receive its messages from all
vertices, including those sent from surviving vertices at Iteration 11;
(2) surviving vertices do not rerun from Iteration 11 to Iteration 17,
and thus will not generate any message during the recovery.

To close this gap, [10] lets every machineW 2 W log the mes-
sages generated by vertices inW to local disk(s). For the previous
example, for computing Iteration 12, surviving vertices may simply
re-send their messages logged at Iteration 11 to the revived vertices.
The recovery is much faster since only those messages targeting
revived vertices need to be transmitted (rather than all messages).

In this case, (OP2) a surviving vertex does not read a checkpoint,
but needs to read logged messages for sending in each recovery
iteration; and (OP3) a revived vertex loads its state from the latest
checkpoint, and re-computes during the recovery iterations.

Besides the above 2 approaches, we will also introduce our pro-
posed approaches in Sec. 4 and 5 under the three key operations. We
remark that our description of [10]’s algorithm here is kept simple
(e.g., cascaded failure is not considered, will discuss in Sec. 5).
MPI & ULFM. While our proposed fault tolerance approaches are
general to a Pregel-like system, w.l.o.g., we implement them in
our resilient framework built upon Pregel+ [11] using User-Level
Failure Mitigation (ULFM) [1] to enjoy the e�ciency and portability
of MPI. ULFM is a recently proposed resilience extension to MPI that
includes new communication primitives for failure noti�cation and
processing, and is supported by OpenMPI (c.f., http://fault-tolerance.
org/) and MPICH (c.f., http://www.mpich.org/static/docs/v3.2/).

We run multiple workers on each machine, and MPI automat-
ically tracks worker-to-machine mapping. MPI provides a set of
communication primitives, each takes a “communicator” object
which speci�es a set of workers among which the communication
happens. Our framework deals with 3 worker sets/communicators:
(1)Wall: the set of all workers; (2)Walive: the set of workers sur-
viving a failure; (3)Wnew: the set of new workers, which revives
those workers on crashed machine(s) after a failure occurs.

When a failure occurs, the set of surviving workersWalive may
generateWnew using an MPI primitive MPI_Comm_spawn. As we
shall see, Walive can be obtained using the new ULFM primitve
MPIX_Comm_shrink when a failure is detected.

Recall that Pregel tracks the vertex-to-worker mapping using
a hash function Wi = hash(�). To allow hash(.) to still be valid
after machine failures, we decouple it from the worker-to-machine
mapping tracked by MPI. If a machineW crashes, for each worker
onW we respawn a new worker on a surviving/standby machine
to replace it. This is achieved by assigning it the same worker ID (or
“rank”) as ofW , while IDs of surviving workers remain unchanged.

The respawned workers are evenly assigned to the alive ma-
chines so that the workload is still balanced after recovery (recall

that each machine runs multiple workers). Since the vertex-to-
worker mapping is �xed, we can simply extend the concept sur-
viving vertex (resp. revived vertex) to surviving worker (resp.
revived worker). If a worker failed and then revived (on another
machine), then all its vertices are revived; if a worker is surviving,
so are its vertices. We thus use surviving/revived workers rather
than surviving/revived vertices in the presentation hereafter.
Worker State Commits. We �rst de�ne some important concepts
that are used in our resilient Pregel framework design.

Pregel+ runs 3 phases of processing in each iteration:

P1: vertex-centric computation is performed on all active ver-
tices, which generates all out-going messages;

P2: messages are combined and then sent to target machines;
P3: all workers synchronize their partially aggregated data and

control information, to obtain overall aggregated value and
job status (e.g., to determine whether job terminates).

Since machine failures can only be detected by communication
(i.e., in P2 and P3), it is guaranteed that when a workerW detects a
failure in Iteration i (after P1), all vertex states and partially aggre-
gated data and control information ofW have been fully updated.
Here, we say that the state ofW , denoted by s(W ), is at Iteration i ,
or simply, s(W ) = i . We also say thatW partially commits Iter-
ation i . In other words, when a failure occurs at Iteration i , every
worker must have partially committed Iteration i .

If all workers also �nish P2 and P3, we say that the iteration is
fully committed since (1) all messages reach the receiver side and
(2) the global aggregator value and control information are obtained.

We only checkpoint an iteration after it is fully committed, so that
the checkpoint of Iteration i can save (1) Mi+1

in (�) of every vertex
� (input to compute(.)) and (2) the aggregator value, both of which
can be later loaded to advance computation to Iteration (i + 1).
Master Election. We eliminate single-point-of-failure risks by al-
lowing any surviving worker to be elected as a master. Speci�cally,
we let the master be a workerW with the largest state s(W ), i.e.,
the longest-living worker (denoted byWmax ), with ties broken by
worker ID. MasterWmax is important for log-based recovery where
surviving workers do not compute to generate partial aggregate and
control information: all workers can directly obtain global informa-
tion fromWmax , which logs information till Iteration s(Wmax ).
The Resilient Framework. Recall our key operations OP1–OP3
for specifying a resilient Pregel system. They are positioned in our
framework as shown in Fig. 2, highlighted in bold red font.

Fig. 2(a) shows the main execution �ow of a worker, where
we omit low-level details such as initializing iteration number and
registeringWall with an error handling function (i.e., function er-
ror_handling() in Fig. 2(c)) using MPI_Comm_set_errhandler. Line 1
refers to the recovery process detailed in Fig. 2(b), and is only run by
a respawned worker. A worker that starts with a job normally goes
directly to Line 2, where it backs up the execution environment
before the iterative computation in Line 5. Here, we use the setjmp
and longjmp functions of the C library. If a worker calls setjmp(en�)
to back up its environment to en� , it can later call longjmp(en�) to
return to the backup position. Line 3 checks whether the worker is
a survivor of a failure, who just jumped back from error handling.
If so, it enters Line 4 to recover its data. Finally, Line 5 performs

http://fault-tolerance.org/
http://fault-tolerance.org/
http://www.mpich.org/static/docs/v3.2/
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(a) program_entry_point()
1:  new_worker_init()
2:  ret← setjmp(env)
3:  if (ret = BACK_FROM_LONGJMP)
4:  { OP2: survivor_recovery() }
5:  loop{  OP1: run_an_iteration() }

(c) error_handling()
1:   mpi_revoke(!all)
2:   !alive ← mpi_shink(!all)
3:   elect a master from !alive
4:   spawn !new to replace failed workers
5:   if (I am master)
6:   { send information to new workers }
7:   !all ← mpi_merge(!alive, !new)
8:   register !all with err_handling()
9:   longjmp(env)

(b) new_worker_init()
1:   if (I am spawned by !alive) {
2:        receive information from master of !alive
3:        !all ← mpi_merge(!alive, !all)
4:        register !all with err_handling()
5: OP3: new_worker_recovery()
6:   }

Error Detected

Jump Back

def

Figure 2: The Resilient Pregel Framework
iterative computation, and this is where communication error may
occur to jump execution �ow to error_handling().

We now consider the execution �ow of a surviving worker.
Suppose a workerWf fails, then any workerWd communicating
withWf will detect the failure and call error_handling(). In Fig. 2(c),
Wd will then call ULFM primitive MPIX_Comm_revoke at Line 1
to notify other workers inWall about the failure, and blocks on
another ULFM primitive MPIX_Comm_shrink at Line 2. Upon re-
ceiving revoke noti�cation, any other worker will immediately
abort its on-going MPI communication primitive, and report an
error; this directs its execution �ow into error_handling() in Fig. 2(c),
and reaching MPIX_Comm_shrink at Line 2.

MPIX_Comm_shrink ignores revoke noti�cations and blocks
until every surviving worker calls it, upon which time it returns
the set of surviving workersWali�e (see Line 2 in Fig. 2(c)). Then,
the surviving workers elect master Wmax at Line 3, and spawn
a set of (|Wall | � |Wali�e |) new workers, Wnew , to replace the
failed ones (Line 4) by calling MPI_Comm_spawn. The elected
master then sends information to each new worker, such as the
assigned worker ID and the latest checkpoint to load (Lines 5–6).
Afterwards, a surviving worker recoversWall by mergingWali�e
and Wnew (Line 7) by calling MPI_Intercomm_merge, and then
registers error_handling() to it (Line 8). Finally, longjmp is called
at Line 9 to jump back to Line 2 of Fig. 2(a), after which Line 4 is
called where a surviving worker recovers its data.

Finally, we consider the execution �ow of a respawned worker.
WhenWnew is created by Line 4 of Fig. 2(c), we haveWall =Wnew
for every respawned worker. A respawned worker enters Line 1 of
Fig. 2(a) to initialize its state, which is detailed in Fig. 2(b). Speci�-
cally, the worker �rst obtains information like its assigned worker
ID and the latest checkpoint (Line 2), and then incorporatesWali�e
into Wall (Line 3) by calling MPI_Intercomm_merge and regis-
ters error_handling() to it (Line 4). Finally, the worker restores the
pre-failure state of a failed worker in Line 5 (e.g., by loading a check-
point), before returning to the main execution �ow for iterative
computation (i.e., Line 5 of Fig. 2(a)).

4 LIGHTWEIGHT CHECKPOINTING
Motivation. A conventional checkpoint is heavyweight, since it
saves the following data for every vertex � : (1) value a(�), (2) adja-
cency list �(�), and (3) the set of received messages Min (�) in the
next iteration (i.e., after message shu�ing). Here, Min (�) is needed
to update a(�) and compute new messages in the next iteration,
while �(�) is needed since Pregel supports topology mutation.

However, a heavyweight checkpoint is often an overkill. Con-
sider PageRank computation again. Recall that in Iteration i , once

Iteration i Iteration i + 1

Vertex v(i-1)

a(i-1)(v)
Γ(i-1)(v)
on(i-1)(v)

Vertex vi

ai(v)
Γi(v)
oni(v)

Min
i(v)

π(i-1)(v) πi(v)
g

Mout
i(v)

h

Figure 3: “Compute” Function for LWCP
a vertex � computes a(i)(�) using incoming messages, its outgoing
messages can be directly derived from a

(i)(�) and �(�). Speci�cally,
message value is a(i)(�)/|�(�)| and message targets are �(�). As
a result, it su�ces to save a lightweight checkpoint (LWCP) that
includes only the PageRank a(�) of every vertex �: during recov-
ery, �(�) is static and can be directly loaded from the input, and
outgoing messages of � can be computed from a(�) and �(�) for
sending. Messages and edges do not need to be checkpointed.

This is a huge save in checkpointing cost, since |E | � |V | usually
holds in a real graph G, and messages are usually sent along edges
in each iteration with an amount comparable to O(|E |). Sec. 6 will
show that when computing PageRanks on a web graph, it takes 60s
to write a conventional checkpoint, but only 2s to write an LWCP.

Formally, LWCP is applicable if UDF compute(.) can be formu-
lated as two functions below running in order:

�
(i)(�)  �(�,� (i�1)(�),M(i)

in (�)), (2)

M
(i)
out (�)  h(�,� (i)(�)). (3)

Put simply, �(.) �rst computes a new state for � from its old state
and the messages received by � , and then h(.) generates messages
solely from the new state of� (rather than M

(i)
in (�)). Fig. 3 illustrates

�(.) and h(.). Note that it is a special case of Fig. 1 and Eq (1).
Challenges. While LWCP is straightforward for computing PageR-
anks, some problems remain when generalizing it to an arbitrary
Pregel program since: (1) some vertices may be inactive and they
should not generate outgoing messages (e.g., in Hash-Min); (2) for
Pregel algorithms with topology mutation, we should correctly
recover adjacency list �(�) of every vertex� from the checkpointed
data; (3) we should tolerate the case where a vertex � needs to
examine Min (�) to update a(�) and generate new messages.

To illustrate Point (1), consider the Hash-Min algorithm where a
vertex updates its state and sends messages only when it receives
a smaller vertex ID. In this case, we can expand vertex value a(�)
with a boolean tag indicating whether the value is updated, so
that h(.) can be properly formulated without checking Min (�): h(.)
generates messages targeting neighbors �(�) only if the tag is set.

Point (3) is common for Pregel algorithms that use the pointer
jumping technique to bound the number of iterations, such as the
S-V algorithm of [12] for computing connected components, and
the minimum spanning forest algorithm of [8]. In these algorithms,
a vertex � needs to respond to more and more vertices as the com-
putation goes on, and we thus cannot expand a(�) to include all
their IDs. Fortunately, such cases only happen in a small fraction of
iterations, and we can avoid writing an LWCP in those iterations.
Solution Overview. Interestingly, every Pregel algorithm we have
seen so far falls into one of 3 categories: (1) always-active algorithms
where all vertices are active and compute in all iterations, such as
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computing PageRanks; (2) traversal algorithms where a vertex only
sends messages in an iteration if its value is updated by the incom-
ing messages, such as Hash-Min; (3) request-responding algorithms
where in some iterations, a vertex needs to respond its state to many
requesting vertices (recall the previous paragraph); we call such an
iteration as a responding iteration, where LWCP is inapplicable.

We aim to apply LWCP to an arbitrary Pregel algorithm as non-
invasive as possible. For example, a Pregel program needs no change
for always-active algorithms; but minor changes are needed in other
cases to formulate UDF compute(.) according to the 2-phase func-
tions f and� as shown in Eq. (2) and (3). This is a reasonable tradeo�
between programming simplicity and checkpointing performance,
and provides an option beyond naïve checkpointing.

Our LWCP solution consists of 2 techniques: (1) message recov-
ery from vertex states; and (2) incremental edge checkpointing:
Message Recovery from Vertex States. We keep the familiar
compute(.) function for users to implement, rather than ask users to
explicitly implement two UDFs corresponding to Eq. (2) and (3). This
is because some Pregel algorithms have responding iterations that
cannot be thus formulated, while other algorithms like PageRank
computation need no reformulation. However, we do require users
to keep the 2-phase operations of Eq. (2) and (3) in mind when
writing UDF compute(.) to utilize LWCP, as explained below.

Firstly, we require users to mask those iterations where LWCP
is inapplicable (i.e., responding iterations) via another UDF LWC-
Pable() called right before each iteration. If such an iteration is
scheduled for checkpointing, our framework will postpone check-
pointing till the �rst subsequent iteration where LWCP is applicable.

Secondly, for an iteration where LWCP is applicable, users may
need to include additional �elds into the vertex value (e.g., for Hash-
Min), and they need to formulate the logic in two steps, (i) updating
vertex state using incoming messages (i.e., Eq. (2)), followed by
(ii) sending messages according to the updated vertex state (i.e.,
Eq. (3)). This is because when failure occurs, a revived worker only
needs to run Step (ii) after loading the latest checkpointed ver-
tex state (already updated before being checkpointed); as we shall
see soon, our framework reuses UDF compute(.) for regenerating
messages, but it disables vertex state updates in Step (i) to ensure
correct message generation from checkpointed vertex states.

Due to the space limitation, we provided an example on how to
write compute(.) of LWCP for the triangle �nding algorithm of [7]
to account for above considerations in the appendix of our earlier
technical report of this paper on arXiv [13] for interested readers.
Incremental Edge Checkpointing. A conventional checkpoint
stores �(�) of every vertex� which costsO(|E |) space in each check-
point. We reduce the amount of saved data through incremental
checkpointing: each workerW logs its requests of topology muta-
tion to the local disk(s), and whenW writes a new checkpoint, these
logged requests are appended (i.e., committed) to a log �le EW on
HDFS. The locally logged requests are then deleted fromW ’s local
disk(s). To recover the adjacency lists of vertices onW ,W simply
loads the initial edge data, and then replays the logged mutation
requests (loaded from HDFS �le EW ) till the latest checkpoint.

As an example, consider the k-core �nding algorithm of [7]
which only performs edge deletions during iterative computation.
Using incremental checkpointing, at most O(|E |) edge mutation

data are written to HDFS throughout an entire job! Incremental edge
checkpointing also applies to log-based recovery to be described
in Sec. 5, as a surviving worker may forward the necessary edge
mutation requests (loaded from its local log) to revived workers.
Implementation. Let us call the conventional heavyweight check-
pointing approach as HWCP, and our new proposal as LWCP. We
now explain how both approaches are implemented using our
framework shown in Fig. 2, especially the behavior of OP1–OP3.

Since checkpointing is performed during normal execution, it
is implemented inside OP1: run_an_iteration(), where a workerW
processes each iteration in the following four steps:

• S1: UDF compute(.) is called on every active vertex inW ;
• S2: messages are shu�ed to the receiver side, global aggre-

gator value and control information are synchronized;
and if the current iteration needs to be checkpointed:

• S3: the data of vertices inW are written to HDFS along with
the synchronized aggregator value;

• S4: the previous checkpoint on HDFS is deleted.
A barrier is needed before “S3” to ensure that all workers have
globally committed the iteration before checkpointing begins. A
barrier is also needed before “S4” to ensure that all data of the
current checkpoint has been saved (or old checkpoint is still valid).

We denote the checkpoint for Iteration i by �(i), which consists
of a �le �(i)

W on HDFS for each workerW 2 Wall . Speci�cally, each
workerW contributes to �(i) by writing the data of its vertices. To
roll back later to Iteration i ,W may simply load �(i)

W .
Our LWCP approach implements both recovery functions OP2

and OP3 in Fig. 2 with the same logic where each workerW :
• loads its vertices’ states from the latest LWCP �(i)

W ;
• generates messages from the loaded states (c.f. Eq. (3));
• shu�es the generated messages to the receiver side for use

by vertices for running UDF compute(.) in Iteration (i + 1).
Moreover, adjacency lists are loaded from the input graph fol-

lowed by replaying the logged topology mutations. If there is no
topology mutation, surviving workers need not load adjacency lists.

Note that after loading an LWCP, we need to generate messages
and then shu�e them. This is in contrast to HWCP which directly
loads the shu�ed messages at the receiver side. However, this one-
o� message generation cost for failure recovery pays o�, as LWCP’s
faster checkpointing provides faster failure-free performance.

One problem remains: if an inactive vertex � does not receive
any message in Iteration i , it will not call compute(.) and generate
messages; as a result, if an LWCP �(i)

W is loaded for recovery, �
also should not generate any message, but this condition cannot be
derived from �’s loaded state which is after update by Iteration i .
For example, on(i)(�) = false does not indicate whether� is inactive
at the beginning of Iteration i , or � is active but then votes to halt.

To address this issue, we let each LWCP �(i) additionally keep a
boolean tag � (i)(�) for each vertex� indicating whether� .compute(.)
is called in Iteration i . After �(i) is loaded for recovery, our LWCP
algorithm generates messages for a vertex � only if � (i)(�) = true.

Another problem is how to generate messages from loaded ver-
tex states according to Eq. (3) after failure happens. We would like
to keep message generation as a transparent process without let-
ting users implement another UDF for Eq. (3), i.e., by reusing UDF
compute(.) which is formulated according to Eq. (2) and (3).
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To avoid the part of � .compute(.) that corresponds to Eq. (2)
from changing (again) �’s state loaded from �(i), we condition the
behavior of functions like set_value(.) and vote_to_halt(.) that are
called in compute(.) on the context: if they are called right after
loading �(i) for recovery, they return without updating �’s state.

5 LOG-BASED FASTER RECOVERY
Motivation. The LWCP approach described in Sec. 4 only reduces
the failure-free execution cost paid for a job to be fault-tolerant.
Even when only one machine fails, every machine still needs to
rerun from the latest checkpointed iteration. Sec. 3.2 have discussed
[10]’s message logging approach where surviving workers do not re-
compute during recovery, and we denote this algorithm as HWLog.

HWLog achieves faster recovery since messages are only trans-
mitted to revived machines. Although a machine needs to log every
message sent, [10] observed that streaming messages to local disk(s)
is faster than sending messages over network, and hence message
logging incurs negligible overhead during failure-free execution.

However, [10] never garbage-collects logged messages, which
leads to problems in a realistic environment. Speci�cally, consider
PageRank computation on a graph G = (V ,E) again, where each
iteration sends a message along every edge. If the computation runs
for 100 iterations, then 100 · |E | messages are logged in total, whose
volumn is about 100⇥ that of G. This is yet one job, and message
logs will soon use up disk space if multiple jobs are executed.

As a practical implementation, all previously logged messages
should be garbage-collected right after a checkpoint is written, since
only messages logged after the latest checkpoint are needed for
recovery. Applying this approach to PageRank computation using
checkpointing frequency � = 10 iterations, the log data volume
never exceeds 10⇥ that of G . However, as Sec. 6 will show, deleting
the messages logged for the previous 10 iterations is quite time-
consuming (e.g., OS needs to traverse inodes that keep the log �le
data), and this increases the failure-free job execution time.

We propose a novel solution called LWLog to address the above
problem, and meanwhile, since LWLog is built on top of LWCP, it
also enjoys faster checkpointing. Instead of logging messages like
in [10], LWLog logs vertex states. When a surviving vertex needs to
send messages to revived vertices, these messages are re-generated
from the logged vertex states. Since the data volume of vertex states
is much smaller than that of messages, deleting them is much faster
and incurs negligible overhead during the failure-free execution.
Challenge. In Sec. 3.2 we have seen how HWLog works for PageR-
ank computation, where we assume that a checkpoint is written
every 10 iterations, and a failure occurs at Iteration 17. However,
things become more complicated if cascading failures are consid-
ered, as the states of vertices may be at more than 2 di�erent iter-
ations. For example, assume that the �rst failure happens at Iter-
ation 17 on workerW1, and then during recovery, another failure
happens at Iteration 15 on W2. In this case, the states of revived
vertices since the �rst (resp. second) failure are at Iteration 15 (resp.
10), while the states of all other vertices are at Iteration 17.

Our log-based approaches (HWLog and LWLog) aim to recover
from any numbers of cascading failures, and the key design idea
is that a vertex whose state is at Iteration i should perform
vertex-centric computation only a�er Iteration i is recovered.

Our approaches also aim to provide a wholesome solution to
log-based recovery, including how to recover aggregator values
and control information, which are not touched upon in [10].
Assumptions & Idea Overview. In both HWLog and LWLog,
we assume that all current local logs are garbage-collected by the
respective workers after a new checkpoint is written.

Recall from Sec. 3.2 that s(W ) is the state of W , i.e., s(W ) = i

means that W partially commits Iteration i and thus, all vertex
states and partially aggregated data and control information ofW
have been fully updated by Iteration i .

During log-based recovery, a workerW may have a state s(W ) >
i in Iteration i , since the states of surviving workers are not rolled
back, and these workers simply forward messages loaded (or gen-
erated) from local logs to those workers that perform computation.

We let each worker W keep track of the states of every other
worker inW

0 2 Wall (i.e., s(W 0)), so thatW knows whetherW 0
will need messages for computing the next iteration, and only when
this is the case willW send messages toW 0.

To get updated worker states, whenWall is recovered asWali�e[
Wnew after a failure, the workers would synchronize their states
with each other. The synchronization is necessary since surviving
workers can be at di�erent iterations due to cascading failures, and
a respawned worker has to get the states of all surviving workers
for inferring the new masterWmax (which has the largest state).
HWLog Implementation. We �rst consider OP1: run_an_iteration()
in Fig. 2. In Iteration i , if a workerW performs vertex-centric com-
putation (which updates s(W ) to i), the generated messages towards
eachW

0 2 Wall are processed in 2 steps as follows:
• messages are appended to a queue and combined at last;
• the combined messages are sent toW 0, and meanwhile, con-

currently written to a �le F
(i)
W!W 0 onW ’s local disk.

Since local disk write is typically faster than network transmis-
sion [10], log writing �nishes earlier than message transmission.

We regard Iteration i as partially committed byW only if F (i)W!W 0
is fully written for everyW 0 2 Wall , since any workerW 0 may fail
and need message retransmission during recovery.

Thus, when failure happens, the execution of error_handling() by
a surviving worker in Fig. 2(b) needs to block until all its concurrent
log-writes are complete. A worker also needs to guarantee that all
log-writes are complete before fully committing an iteration, but
this adds no overheads as message transmission is slower.

Let the current iteration number be i . In OP1: run_an_iteration(),
a workerW ’s behavior has 3 cases depending on the value of s(W ):

• Case 1: s(W) � i. In this case,W is a surviving worker who
has partially committed Iteration i before, and thus it does
not need to perform vertex-centric computation. Instead, it
loads messages from F

(i)
W!W 0 for each target workerW 0 such

that s(W 0)  i , and sends them toW 0. This is because such
a workerW 0 will perform computation at the next iteration
(i.e., Iteration (i + 1)), which requires these messages.

• Case 2: s(W) = i � 1. In this case,W needs to perform vertex-
centric computation and updates its state s(W ) from (i � 1)
to i . All generated messages need to be logged, since any
worker may fail later and request messages fromW for re-
computation. However, like in Case 1, only those messages
towards a workerW 0 with s(W 0)  i are actually sent.
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• Case 3: s(W) < i � 1. This case is impossible, which can be
proved by induction on i using the fact that in Case 2, if the
state of a worker is less than the current Iteration i , it will
perform computation and update its state to i .

As a wholesome solution, we now also consider the recovery of
aggregator and control information. Recall thatWmax is the elected
master with the largest state, i.e., s(Wmax ). Then, we have 3 cases de-
pending on how current iteration number i compares with s(Wmax ):

• Case 1: i < s(Wmax). In this case, no worker synchroniza-
tion is performed since recovery has not reached the pre-
vious failed Iteration s(Wmax ) yet, and thus every worker
may simply obtain the global aggregator value and control
information fromWmax who logged them before.

• Case 2: i = s(Wmax). In this case, Wmax has not globally
committed Iteration i yet and thus worker synchronization
is necessary for recovering Iteration i; note that Wmax is
partially committed and already has logged the partially ag-
gregated value and control information to be synchronized.

• Case 3: i > s(Wmax), which is impossible since Wmax is
the longest-living worker, and thus must live through the
current iteration (i.e., s(Wmax ) � i).

We next consider the logic of OP2: survivor_recovery() in Fig. 2(a)
and OP3: new_worker_recovery() in Fig. 2(b), when failure happens.

• In OP2: survivor_recovery(), a surviving workerW retains its
state s(W ) but sets the iteration number back to the latest
checkpointed one; the message queues ofW are cleared to
remove on-the-�y messages (being transmitted in the failed
iteration), so that these queues can be used to accommodate
messages read from local logs during later recovery.

• In OP3: new_worker_recovery(), a revived worker W sets
both its state s(W ) and the iteration number to the latest
checkpointed iteration; it also loads the latest checkpoint,
which contains incoming messages for the next iteration.

Once the states of surviving and revived workers are restored by
OP2 and OP3, respectively, subsequent recovery proceeds in it-
erations by running OP1: run_an_iteration() as described before
where only necessary messages are sent depending on how worker
states compares with the current iteration number. Once Itera-
tion s(Wmax ) is recovered, computation returns to normal.
LWLog Implementation. The algorithm of LWLog is similar to
that of HWLog, and we focus on presenting their di�erences.

Note that LWLog is built on top of LWCP, and thus like in LWCP,
LWLog requires users to formulate compute(.) according to Eq. (2)
and (3). In order words, if one uses LWCP by properly formulating
compute(.), LWLog is a free ride and can be enabled.

Unlike HWLog which logs messages generated by vertices, LWLog
directly logs vertex states. As a result, the amount of data written
to a local log is much smaller and hence faster to garbage-collect.

For each vertex � , LWLog logs only �
(i)(�) and a

(i)(�). Recall
that � (i)(�) indicates whether � calls compute(.) in Iteration i . If a
worker needs to generate messages of Iteration i for forwarding, it
generates messages for a vertex � only if � (i)(�) = true.

While an LWCP saves on(i)(�) of a vertex � , on(i)(�) does not
need to be stored in a local vertex-state log since the logged states
are just for message generation and do not overwrite the current

Table 1: Graph Datasets

Data Type |V| |E| AVG Deg Max Deg
WebUK directed 133,633,040 5,507,679,822 41.21 22,429

WebBase 118,142,155 1,019,903,190 8.63 3,841
Friendster undirected 36,869,292 3,612,134,270 55.06 5,214
Orkut×12 164,732,473 2,812,437,576 4.69 1,637,619

vertex states. In other words, it su�ces to store � (i)(�) and a
(i)(�)

to a local log, for generating messages in potential future recovery.
Like in our LWCP approach, LWLog also uses compute(.) for gen-

erating messages during recovery rather than asks users to specify
h(.) of Eq. (3). When recovering messages, compute(.) temporarily
ignores updates to vertex states as in LWCP.

Let us denote the latest checkpointed iteration by `. There are 2
places that require message generation:

• When a failure occurs, a respawned workerW loads check-
point �(`)

W and uses the loaded vertex states to generate
messages for sending, which is the same as in LWCP. In
contrast, a surviving workerW directly loads the proper lo-
cal vertex-state log �le(s) and generates messages from the
loaded vertex states for sending. This is possible because
LWLog adopts a slightly di�erent garbage collection strat-
egy from HWLog: when a new LWCP �(i) is written, all
local logs written before Iteration i are deleted, but the logs
written in Iteration i is retained for later recovery.

• During a recovery iteration i > `, a surviving worker that
needs to forward messages simply loads the proper local
vertex-state log �le(s) and generates messages from the
loaded vertex states for sending.

One problem remains: how LWLog handles a masked iteration
where LWCP is inapplicable? Our solution is simple: since the out-
going messages need to be computed using the incoming messages
in such an iteration (rather than recovered only from the vertex
states), LWLog switches temporarily to message logging instead of
vertex-state logging if an iteration is masked, so that these messages
can be directly loaded for forwarding in potential future recovery.

6 EXPERIMENTS
We now report the performance of checkpointing-based methods
(1) HWCP and (2) LWCP and log-based methods (3) HWLog and
(4) LWLog. Our focus is on checkpointing time and recovery time.

All experiments were conducted on a cluster of 15 machines
connected by Gigabit Ethernet, each with two Intel Xeon E5-2620
CPUs and 48GB RAM. We ran 8 workers on each machine, and thus
120 workers in total. We repeat each experiment for 10 times and
the reported time are averaged over the 10 runs. All our codes are
released at http://www.cse.cuhk.edu.hk/pregelplus/ft.html.
Datasets. Table 1 shows the datasets used in our experiments,
including two directed web graphs WebUK1 and WebBase2, and two
undirected social networks Friendster3 and Orkut4. Since Orkut is a
small graph, we replicate Orkut for 12 times to get an undirected
graph whose size is comparable to Friendster.

1http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
2http://law.di.unimi.it/webdata/webbase-2001
3http://snap.stanford.edu/data/com-Friendster.html
4http://konect.uni-koblenz.de/networks/orkut-links

http://www.cse.cuhk.edu.hk/pregelplus/ft.html
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
http://law.di.unimi.it/webdata/webbase-2001
http://snap.stanford.edu/data/com-Friendster.html
http://konect.uni-koblenz.de/networks/orkut-links
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Algorithms. We consider 3 Pregel algorithms with di�erent work-
loads: (1) PageRank, (2) triangle counting, and (3) Hash-Min.

PageRank computation is time-consuming for a big graph since
in each iteration, every vertex � needs to receive values from its
in-neighbors and distributes its new PageRank among �’s out-
neighbors. However, the time of an iteration is stable throughout
the computation, since the workload in every iteration is the same.

Triangle �nding generates huge amounts of intermediate mes-
sages during the computation. For example, in the algorithm of [7],
to �nd a triangle, 4�1�2�3 (assuming �1 < �2 < �3 ordered by ver-
tex ID), vertex �1 needs to send a message to �2 asking it whether
�3 2 �(�2). Since a graph can have O(|E |1.5) triangles [9], the
message volume is at least O(|E |1.5), which is superlinear to the
graph size. Finding all triangles in one round leads to long-running
iterations that are susceptible to machine failures and total re-
computation. Also, the aggregated memory in a cluster may not
be su�cient to bu�er all the messages. We adopt a multi-round
solution like in [6] where each round only computes a fraction of
triangles, and our algorithm is detailed in our technical report [13].
Its variant for triangle counting was used in our experiments.

Hash-Min [12] computes the connected components of an undi-
rected graph by letting every vertex maintain and propagate the
smallest vertex ID it has seen. For a large graph, Hash-Min is time-
consuming in the �rst few iterations where most vertices call com-
pute(.) and send messages, but as the computation goes on, most
vertices are converged and thus each iteration takes a short time.

Since PageRank is designed for (directed) web graphs, we ran
it on the two directed graphs, WebUK and WebBase. In contrast,
we ran experiments of triangle counting and Hash-Min on the two
undirected graphs Friendster and Orkut ⇥12, since these problems
are de�ned for undirected graphs.

For all the 3 Pregel algorithms, we write a checkpoint every �

iterations. However, in triangle counting and Hash-Min, the run-
ning time of an iteration decreases with the iteration number, and
the short-running iterations towards the end are so fast that check-
pointing every � iterations becomes the major overhead rather
than the actual computation. Therefore, for triangle counting and
Hash-Min, we mask those later iterations to avoid checkpointing.

6.1 Experiments on PageRank Computation
In this set of experiments, we ran the PageRank algorithm of [5],
and wrote a checkpoint for every 10 iterations. We killed a worker at
Iteration 17 to simulate a worker failure. For PageRank computation,
during normal execution (or recovery), every iteration generates
the same number of messages and thus has a stable runtime. We
thus report the average running time of an iteration.
Performance Metrics. There are 4 stages in this set of experi-
ments, which give rise to four time metrics as follows:

• Stage 1: the job �rst executes normally from Iteration 1 to
Iteration 16, and we de�neTnorm as the running time of an
iteration averaged over these 16 iterations.

• Stage 2: after failure occurs at Iteration 17, the latest check-
pointed iteration (i.e., 10) is recovered in timeTcpst ep . This
time is dependent on the fault tolerance approach used: in
HWCP & LWCP, every worker W loads checkpoint �(10)

W ;
also, in LWCP & LWLog, messages generated from vertex
states need to be shu�ed to the receiver side.

• Stage 3: after Iteration 10 is recovered, the job reruns from
Iteration 11 to Iteration 16. We de�neTr ecov as the running
time of an iteration averaged over these 6 iterations, which
is expected to be much shorter than Tnorm in HWLog &
LWLog since messages are not sent to surviving workers.

• Stage 4: �nally, the recovery reaches Iteration 17, and we
denote the time of recovering it by Tl ast . This metric rep-
resents the time of recovering the iteration where the fail-
ure occured. We separate Tlast from Tr eco� since all mes-
sages need to be transmitted in Iteration 17, even for HWLog
and LWLog, as normal computation resumes at Iteration 18,
which need all the messages generated in Iteration 17.

While our algorithms support cascading failures, considering
them leads to more stages and thus more time-metrics to report. We
avoid this complexity to keep the experiment presentation succinct.

Among the metrics, Tnorm is averaged over 16 iterations and
Tr eco� is averaged over 6 iterations, which is good enough since the
time of an iteration is stable in each stage. All ofTcpstep ,Tr eco� and
Tlast re�ect the performance of recovery, but Tr eco� is the most
important since it is averaged over multiple recovery iterations
while Tcpstep and Tlast each just re�ects the time of one recovery
iteration. Also, Tnorm is the time of running one normal iteration,
and is reported only for reference rather than for improving.

We also report metrics on the cost of checkpointing and logging:
• Tcp : the time of writing a checkpoint, which is �(10)

W in
this set of experiments. It includes the time of any garbage
collection operations following the checkpoint writing.

• Tcpload : the time of loading a checkpoint (i.e., �(10)
W here).

This time is averaged over every workerW that loads �(10)
W

from HDFS, and it is actually part of Tcpstep . Note that sur-
vivors do not load checkpoint in HWLog and LWLog.

• Tl o� : the time of writing a local log. This time is averaged
over all workers that write a log and over all iterations (both
in normal execution and during recovery).

• Tl o�l oad : the time of loading a local log. Like Tlo� , this
time is averaged over all workers that load a log, and over
all iterations during recovery.

Performance Highlights. Fig. 4 (resp. Fig. 5) highlights the most
important performance metrics including Tnorm , Tr eco� and Tcp ,
for computing PageRanks over WebUK (resp. WebBase). We can see
that during normal execution, an iteration takes around 32 s on
WebUK, and around 17 s on WebBase.

In HWCP and LWCP, Tr eco� is similar to Tnorm since they sim-
ply rerun the computation during recovery. In contrast, in HWLog
and LWLog, Tr eco� is many times shorter than Tnorm since they
only transmit those messages towards the respawned worker dur-
ing recovery. For example, Tr eco� is around 4⇥ (resp. 8⇥ times)
shorter than Tnorm on WebUK (resp. WebBase).

However, recall that we only kill one of the 120 workers and thus
the message volume to be transmitted is reduced to approximately
1/120 of that during normal execution. But Tr eco� is not reduced
to 1/120 of Tnorm , which is because of 2 reasons:

• Vertex-centric computation and message combining are per-
formed in parallel by all workers during normal execution,
and this time cannot be reduced since the revived worker
still needs to perform these operations in every iteration;
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Figure 4: PageRank over WebUK
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Figure 5: PageRank over WebBase
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Figure 6: E�ect of # of Failed Workers
• Only the respawned worker receives messages, which results

in a communication bottleneck on the receiver side.
We also examined the performance of HWLog and LWLog when

more workers were killed at Iteration 17. The most important obser-
vation is the increase in Tr eco� , which is because more messages
need to be transmitted to the respawned workers during recovery.

Fig. 6 reports the value ofTr eco� as the number of killed workers
increases in the same previous experiments on WebUK. We can see
that Tr eco� increases linearly with the number of workers killed.

From Fig. 4 and 5, we also see that Tcp is sensitive to the fault
tolerance approach adopted. In LWCP and LWLog, Tcp is less than
2.5 s on both datasets, which demonstrates that LWCPs are e�cient.
Compared with the correspondingTnorm , the checkpointing time is
negligible. In contrast, in HWCP and HWLog,Tcp is a few times that
of the corresponding Tnorm since checkpoints are heavyweight.

Also note that HWLog has a much longer Tcp than HWCP. For
example, Tcp is 65.18 s in HWCP but 107.68 s in HWLog. The
additional time consumed by HWLog is for deleting the logged
messages of the previous � = 10 iterations. We can see that if
garbage collection is performed, HWLog even degrades the failure-
free performance compared with HWCP, though recovery becomes
faster. In contrast, we can see that LWLog has similarTcp to LWCP,
since the additional cost for deleting vertex-state logs is negligible.

Table 2: Other Time Metrics for PageRank Computation
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Table 2: Other Time Metrics for PageRank Computation

Tnorm Tcpstep Tlast Tcpload Tlog Tlogload
31.45 s 15.43 s 31.51 s 5.95 s – –
31.42 s 40.84 s 30.34 s 3.28 s – –
32.36 s 16.83 s 29.61 s 3.69 s 1.31 s 0.84 s
32.21 s 18.00 s 30.62 s 3.14 s 0.19 s 0.11 s

(a) Other Time Metrics on WebUK

HWCP
LWCP
HWLog
LWLog

Tnorm Tcpstep Tlast Tcpload Tlog Tlogload
17.11 s 6.58 s 17.74 s 2.83 s – –
17.16 s 21.64 s 17.01 s 1.96 s – –
17.47 s 4.79 s 15.99 s 2.23 s 0.81 s 0.56 s
17.49 s 7.59 s 16.33 s 2.10 s 0.08 s 0.02 s

(b) Other Time Metrics on WebBase

HWCP
LWCP
HWLog
LWLog

Tnorm Tcpstep Tlast Tcpload Tlog Tlogload
31.45 s 15.43 s 31.51 s 5.95 s – –
31.42 s 40.84 s 30.34 s 3.28 s – –
32.36 s 16.83 s 29.61 s 3.69 s 1.31 s 0.84 s
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Figure 10: Hash-Min over Orkut

6.2 Experiments on Triangle Counting
We now report our experiments on triangle counting, running on
Friendster and Orkut. Unlike in PageRank, the time of each round
decreases as the algorithm runs on, since more and more vertices
exhaust their neighbor-pairs for triangle probing.

The time of an iteration has not dropped signi�cantly for the
�rst 20 (resp. 8) iterations on Friendster (resp. Orkut), and thus we
write a checkpoint every 10 (resp. 4) iterations and kill a worker
at Iteration 20 (resp. 8). Since the average time of an iteration is
no longer representative, we rede�ne the metrics for Friendster as
follows (Orkut’s metrics are similarly de�ned): (1) Tnorm : the total
time taken by running Iterations 11–19 normally before worker
failure occurs; (2) Tr eco� : the total time taken by recovering Iter-
ations 11–19 after worker failure is detected; (3) Tcp : the time for
checkpointing an iteration. We focus only on iterations between 10
and 20 in order to compare Tr eco� with Tnorm .

Fig. 7 and 8 report the performance results where we obtain
similar observations as in the PageRank experiments: HWLog and
LWLog have much smaller Tr eco� than Tnorm , and LWCP and
LWLog have much smaller Tcp than HWCP and HWLog.
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6.3 Experiments on Hash-Min
We now report our experiments on Hash-Min, running on Friendster
and Orkut. The time of each iteration decreases as the algorithm
runs on, but it has not dropped signi�cantly for the �rst 4 iterations
on both datasets. For example, on Friendster, the �rst 4 iterations
each takes around 18-19 seconds, but Iterations 5 and 6 take 4.1
seconds and 0.22 second, respectively. We thus write a checkpoint
every 2 iterations and kill a worker at Iteration 4. We de�ne the
metrics similarly as in triangle counting, and the results are reported
in Fig. 9 and 10.

We again obtain similar observations as in previous experiments:
HWLog and LWLog have much smaller Tr eco� than Tnorm , and
LWCP and LWLog have much smallerTcp than HWCP and HWLog.

6.4 Comparison with Existing Systems
So far, we have only compared our fault tolerance approaches within
our own framework. To show the fairness of our comparison, we
now demonstrate that our baseline algorithm, HWCP, is already
faster than existing systems including Giraph 1.0.0, GraphLab 2.2
and GraphX (Spark 1.1.0), which only support the HWCP approach.
Thus, the performance improvement by our proposed LWCP and
LWLog is not due to unfavorable implementation of our baseline.

Other Metrics. Table 2 reports
the other time metrics related
to the cost of checkpointing
and recovery, though Tnorm is
also included for reference. The
entry value ‘–’ in Table 2 means
not applicable.

First, look at the metrics related to recovery: Tcpstep of LWCP
and LWLog is longer than that of HWCP and HWLog, since in order
to recover Iteration 10 after rolling back, a worker in LWCP and
LWLog needs to generate messages from vertex states and shu�e
them to the receiver side, while a worker in HWCP and HWLog
directly loads incoming messages for Iteration 11 from �(10).

Also,Tcpstep is much shorter thanTnorm in HWCP and HWLog,
since when recovering Iteration 10, incoming messages are directly
loaded from �(10) whose time cost is much less than that of vertex-
centric computation plus message combining and transmission as
required in normal execution.

In contrast, Tcpstep is even longer than Tnorm in LWCP, since
LWCP transmits the same amount of messages during recovery as
in normal execution, but these messages are generated from vertex
states which are �rst loaded from �(10) on HDFS. However, this
does not mean that LWCP is inferior to HWCP, sinceTcpstep is just
a one-o� cost for recovering a failure (which happens infrequently),

while LWCP signi�cantly reduces the checkpointing time and thus
improves the failure-free performance of any job.

Although we have seen that Tcp is much more expensive in
HWCP and HWLog than in LWCP and LWLog,Tcpload is relatively
e�cient (around 2–5 s) for all the fault tolerance approaches. This
is because HDFS favors reading over writing: HDFS writing needs
to replicate data to multiple machines for fault tolerance, but HDFS
reading may just read the nearest data replica which is e�cient.

Table 2 also shows that the cost of log loading/writing is negli-
gible. Speci�cally, Tlo� is only around 1 second for HWLog, and
even much shorter for LWLog. Similarly,Tlo�load is also very short.
Such e�ciency is contributed by the fact that OS memory cache
provides locality for sequential local reads/writes.

Since a worker in our log-based approaches transmits and logs
outgoing messages in parallel andTlo� is much shorter thanTnorm ,
logging incurs negligible overhead to normal execution.

6.2 Experiments on Triangle Counting
We now report our experiments on triangle counting, running on
Friendster and Orkut. Unlike in PageRank, the time of each round
decreases as the algorithm runs on, since more and more vertices
exhaust their neighbor-pairs for triangle probing.

The time of an iteration has not dropped signi�cantly for the

�rst 20 (resp. 8) iterations on Friendster (resp. Orkut), and thus
we write a checkpoint every 10 (resp. 4) iterations and kill a worker
at Iteration 20 (resp. 8). Since the average time of an iteration is
no longer representative, we rede�ne the metrics for Friendster as
follows (Orkut’s metrics are similarly de�ned): (1) Tnorm : the total
time taken by running Iterations 11–19 normally before worker
failure occurs; (2) Tr eco� : the total time taken by recovering Iter-
ations 11–19 after worker failure is detected; (3) Tcp : the time for
checkpointing an iteration. We focus only on iterations between 10
and 20 in order to compare Tr eco� with Tnorm .

Fig. 7 and 8 report the performance results where we obtain
similar observations as in the PageRank experiments: HWLog and
LWLog have much smaller Tr eco� than Tnorm , and LWCP and
LWLog have much smaller Tcp than HWCP and HWLog.

6.3 Experiments on Hash-Min
We now report our experiments on Hash-Min, running on Friendster
and Orkut. The time of each iteration decreases as the algorithm
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runs on, but it has not dropped signi�cantly for the �rst 4 iterations
on both datasets. For example, on Friendster, the �rst 4 iterations
each takes around 18-19 seconds, but Iterations 5 and 6 take 4.1
seconds and 0.22 second, respectively. We thus write a checkpoint
every 2 iterations and kill a worker at Iteration 4. We de�ne the
metrics similarly as in triangle counting, and the results are reported
in Fig. 9 and 10.

We again obtain similar observations as in previous experiments:
HWLog and LWLog have much smaller Tr eco� than Tnorm , and
LWCP and LWLog have much smallerTcp than HWCP and HWLog.

6.4 Comparison with Existing Systems
So far, we have only compared our fault tolerance approaches within
our own framework. To show the fairness of our comparison, we
now demonstrate that our baseline algorithm, HWCP, is already
faster than existing systems including Giraph 1.0.0, GraphLab 2.2

and GraphX (Spark 1.1.0), which only support the HWCP approach.
Thus, the performance improvement by our proposed LWCP and
LWLog is not due to unfavorable implementation of our baseline.

We repeated the PageRank experiments of Sec. 6.1 on these
systems and report the major time metricsTnorm andTcp in Fig. 11
and 12. We can see that our HWCP implementation has a much
shorter Tnorm than the others, and that our Tcp is comparable to
Giraph’s, and much shorter than that of GraphLab and GraphX.

Since [10] implements HWLog in Giraph, we also repeated our
PageRank experiments using [10]’s system whose code is provided
by the authors. Their system does not work properly with the
multithreading option of Giraph 1.0.0, and we were only able to
run one worker on each machine. Fig. 13 (resp. Fig. 14) reports the
major performance metrics of their system for running HWCP and
HWLog, where we also compared with our implementation (to be

runs on, but it has not dropped signi�cantly for the �rst
4 iterations on both datasets. For example, on Friendster,
the �rst 4 iterations each takes around 18-19 s, but
Iterations 5 and 6 take 4.1 s and 0.22 s, respectively. We
thus write a checkpoint every 2 iterations and kill a
worker at Iteration 4. We de�ne the metrics similarly
as in triangle counting, and the results are reported in
Fig. 9 and 10.

We again obtain similar observations as in previous
experiments: HWLog and LWLog have much smaller
Tr eco� than Tnorm , and LWCP and LWLog have much
smaller Tcp than HWCP and HWLog.

6.4 System Comparison
To show fairness of our comparison, we now demon-
strate that our baseline algorithm, HWCP, is already
faster than existing systems including Giraph 1.0.0,
GraphLab 2.2 and GraphX (Spark 1.1.0), which only
support the HWCP approach. Thus, the performance
improvement by our LWCP and LWLog is not due to un-
favorable implementation of our baseline. We repeated
the PageRank experiments of Sec. 6.1 on these systems
and report the major time metrics Tnorm and Tcp in
Fig. 11 and 12. We can see that our HWCP implementa-
tion has a much shorterTnorm than the others, and that
our Tcp is comparable to Giraph’s, and much shorter
than that of GraphLab and GraphX.

Since [10] implements HWLog in Giraph, we also re-
peated our PageRank experiments using [10]’s system.
Their system does not work properly with the mul-
tithreading option of Giraph 1.0.0, and we were only
able to run one worker on each machine. Fig. 13 (resp.
Fig. 14) reports the major performance metrics of their
system for running HWCP and HWLog, where we also
compared with our implementation (to be fair, we only
run one worker per machine in this comparison). We
see that [10]’s implementation is much more expensive
than ours.

7 CONCLUSIONS
This paper proposed a lightweight checkpointing method that sig-
ni�cantly reduces the checkpointing time, and handles challenges
like graph mutation and iterations where LWCP is inapplicable.

The idea is further combined with vertex-state log based recovery
to reduce recovery time, without sacri�cing the bene�t of faster
checkpointing provided by LWCP.
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